分析 由$sinA=cos(\frac{π}{2}-B)$=sinB,a=3,c=2,得b=a=3,由此能求出cosC,從而得到sinC,進(jìn)而能求出△ABC的面積.
解答 解:在△ABC中,角A,B,C所對的邊分別為a,b,c.
∵$sinA=cos(\frac{π}{2}-B)$=sinB,a=3,c=2,
∴b=a=3,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{9+9-4}{2×3×3}$=$\frac{14}{18}$=$\frac{7}{9}$,
∴sinC=$\sqrt{1-(\frac{7}{9})^{2}}$=$\frac{4\sqrt{2}}{9}$,
∴△ABC的面積S=$\frac{1}{2}absinC$=$\frac{1}{2}×3×3×\frac{4\sqrt{2}}{9}$=2$\sqrt{2}$.
故答案為:$\frac{7}{9}$,$2\sqrt{2}$.
點(diǎn)評 本題考查三角形中角的余弦值和三角形面積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理、余弦定理、三角函數(shù)誘導(dǎo)公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{4\sqrt{2}π}}{3}$ | B. | $\frac{{8\sqrt{2}π}}{3}$ | C. | $\frac{{16\sqrt{2}π}}{3}$ | D. | $\frac{{32\sqrt{2}π}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6.5h | B. | 5.5h | C. | 3.5h | D. | 0.5h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com