已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點,過點M分別作直線MAMB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1k2,且k1k2=4,證明:直線AB過定點.
(1)y2=1.(2)見解析
(1)∵等軸雙曲線離心率為,∴橢圓C的離心率e.
e2,∴a2=2b2.
∵由xy=0與圓x2y2b2相切,得
b=1,∴a2=2.
∴橢圓C的方程為y2=1.
(2)證明、偃糁本AB的斜率不存在,設(shè)方程為xx0,則點A(x0,y0),B(x0,-y0).
由已知=4,得x0=-.
此時AB方程為x=-,顯然過點.
②若直線AB的斜率存在,設(shè)AB方程為ykxm,依題意m≠±1.
設(shè)A(x1,y1),B(x2,y2),由
得(1+2k2)x2+4kmx+2m2-2=0.
x1x2=-,x1x2.
由已知k1k2=4,可得=4,
=4,即2k+(m-1) =4,將x1x2,x1x2代入得k=2,∴k=2(m+1),
m-1.故直線AB的方程為ykx-1,
yk-1.
∴直線AB過定點.
綜上,直線AB過定點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,點,線段的中點在拋物線上. 設(shè)動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率相等. 直線與曲線交于兩點(的左側(cè)),與曲線交于兩點(的左側(cè)),為坐標原點,
(1)當=,時,求橢圓的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓過點,離心率為.
(1)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截得線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線交橢圓兩點.
(Ⅰ)求橢圓的焦點坐標及長軸長;
(Ⅱ)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點P(0,-1)是橢圓C1=1(a>b>0)的一個頂點,C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2A,B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C的焦點在軸上,焦距為2,直線n:x-y-1=0與橢圓C交于A、B兩點,F(xiàn)1是左焦點,且,則橢圓C的標準方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線左焦點且傾斜角為的直線交雙曲線右支于點,若線段的中點落在軸上,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點的雙曲線的漸近線方程為為雙曲線右支上一點,為雙曲線的左焦點,點的最小值為        .

查看答案和解析>>

同步練習(xí)冊答案