函數(shù)的一條對(duì)稱(chēng)軸的方程為,則以向量為方向向量的直線的傾斜角為         (    )

    A. B.         C. D.

 

【答案】

D

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
6
)-1(ω>0)的導(dǎo)數(shù)f′(x)的最大值為3,則f(x)的圖象的一條對(duì)稱(chēng)軸的方程是( 。
A、x=
π
9
B、x=
π
6
C、x=
π
3
D、x=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于任意x∈R,都有f(x)=f(-x)及f(x+4)=f(x)+f(2)成立.當(dāng)x1、x2∈[0,2]且x1≠x2時(shí),都有[f(x1)-f(x2)](x1-x2)>0成立.現(xiàn)給出下列四個(gè)結(jié)論:
①f(2)=0;②函數(shù)f(x)在區(qū)間[-6,-4]上為增函數(shù);③直線x=-4是函數(shù)f(x)的一條對(duì)稱(chēng)軸;④方程f(x)=0在區(qū)間[-6,6]上有4個(gè)不同的實(shí)根.
其中正確命題的序號(hào)是
①③④
. (把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a=(cosωx,sinωx),b=(cosωx,
3
cosωx)
,其中0<ω<2.記f(x)=a•b.
(1)若f(x)的最小正周期為2π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸的方程為x=
π
6
,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州模擬)函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點(diǎn)A、B分別為該部分圖象的最高點(diǎn)與最低點(diǎn),且這兩點(diǎn)間的距離為4
2
,則函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)右焦點(diǎn)F且斜率為1的直線交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn);又函數(shù)y=asinx+3bcosx圖象的一條對(duì)稱(chēng)軸的方程是x=
π
6
.(1)求橢圓C的離心率e與直線AB的方程;(2)對(duì)于任意一點(diǎn)M∈C,試證:總存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案