16.在數(shù)列{an}中,a1=1,an=2an-1+1(n≥2,n∈N+).
(I)求a2,a3,a4的值;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法來證明.

分析 (Ⅰ)由數(shù)列{an}的遞推公式依次求出a2,a3,a4;
(Ⅱ)根據(jù)a1,a2,a3,a4值的結(jié)構(gòu)特點猜想{an}的通項公式,再用數(shù)學(xué)歸納法①驗證n=1成立,②假設(shè)n=k時命題成立,證明當(dāng)n=k+1時命題也成立

解答 解:(Ⅰ)a1=1,an=2an-1+1(n≥2,n∈N+),
∴a2=2a1+1=3,
a3=2a2+1=7,
a4=2a4+1=15,
(Ⅱ)由(Ⅰ)可以猜想an=2n-1,
①當(dāng)n=1時,猜想成立,
②假設(shè)當(dāng)n=k時,猜想成立,即ak=2k-1,
那么ak+1=2ak+1=2(2k-1)+1=2k+1-1,
即當(dāng)n=k+1猜想也成立,
由①②可知,猜想成立,即an=2n-1(n∈N+).

點評 本題是中檔題,考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法證明數(shù)列問題的方法,考查邏輯推理能力,計算能力.注意在證明n=k+1時用上假設(shè),化為n=k的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{lo{g}_{3}(x+1)}{\sqrt{3-x}}$的定義域是( 。
A.(-1,3)B.[-1,3]C.(-1,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(  )
A.m∥n,m⊥α⇒n⊥αB.α∥β,m?α,n?β⇒m∥n
C.m?α,n?β,m∥n⇒α∥βD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在四邊形ABCD中,設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{BC}=\overrightarrow c$,則$\overrightarrow{DC}$=(  )
A.$\overrightarrow a-\overrightarrow b+\overrightarrow c$B.$\overrightarrow b-(\overrightarrow a+\overrightarrow c)$C.$\overrightarrow a+\overrightarrow b+\overrightarrow c$D.$\overrightarrow b-\overrightarrow a+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系中,已知A(1,0),B(3,2),則直線AB的傾斜角大。ā 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求1734,816,1343的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinx($\frac{π}{2}$-x)sinx-cos2x.
(1)求函數(shù)f(x)的單詞遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=$\frac{1}{2}$,△ABC的面積為$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a≠0),試探究函數(shù)f(x)的極值情況.

查看答案和解析>>

同步練習(xí)冊答案