【題目】某電視廠家準(zhǔn)備在五一舉行促銷(xiāo)活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷(xiāo)售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬(wàn)元)和銷(xiāo)售量y(萬(wàn)臺(tái))的數(shù)據(jù)如下:

(1)若用線(xiàn)性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線(xiàn)性回歸方程(其中;參考方程:回歸直線(xiàn),

(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線(xiàn)性回歸模型和該模型的分別約為0.75和0.88,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更好;

(3)已知利潤(rùn)z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷(xiāo)售量及利潤(rùn)的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):

【答案】(1);(2)見(jiàn)解析;(3)萬(wàn)元

【解析】

1)由題中數(shù)據(jù)和參考公式計(jì)算可得線(xiàn)性回歸方程;

(2)根據(jù)的大小關(guān)系判斷兩種模型的模擬效果;

(3)在第(2)問(wèn)基礎(chǔ)上,根據(jù)已知條件進(jìn)行計(jì)算可得答案.

解:(1)由題意有,,

,,

,

∴y關(guān)于x的線(xiàn)性回歸方程為;

2R2越接近于1,模型的擬合效果越好,故選用;

(3)廣告費(fèi)x=20時(shí),銷(xiāo)售量預(yù)報(bào)值(萬(wàn)臺(tái)),

故利潤(rùn)的預(yù)報(bào)值(萬(wàn)元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;

(Ⅱ)若,求證:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇到行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線(xiàn)”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個(gè)月內(nèi)駕駛員不“禮讓斑馬線(xiàn)”行為的統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

6

不“禮讓斑馬線(xiàn)”駕駛員人數(shù)

120

105

100

85

90

80

(Ⅰ)請(qǐng)根據(jù)表中所給前5個(gè)月的數(shù)據(jù),求不“禮讓斑馬線(xiàn)”的駕駛員人數(shù)與月份之間的回歸直線(xiàn)方程;

(Ⅱ)若該十字路口某月不“禮讓斑馬線(xiàn)”駕駛員人數(shù)的實(shí)際人數(shù)與預(yù)測(cè)人數(shù)之差小于5,則稱(chēng)該十字路口“禮讓斑馬線(xiàn)”情況達(dá)到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線(xiàn)方程,判斷6月份該十字路口“禮讓斑馬線(xiàn)”情況是否達(dá)到“理想狀態(tài)”?

(Ⅲ)若從表中3、4月份分別選取4人和2人,再?gòu)乃x取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的兩人恰好來(lái)自同一月份的概率.

參考公式: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線(xiàn)與橢圓 交于兩點(diǎn),若直線(xiàn)的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級(jí)一模數(shù)學(xué)分?jǐn)?shù)(滿(mǎn)分150分),每個(gè)班級(jí)20名同學(xué),現(xiàn)有甲、乙兩位同學(xué)的20次成績(jī)?nèi)缦铝星o葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩位同學(xué)成績(jī)的中位數(shù),并將乙同學(xué)的成績(jī)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可)

(Ⅲ)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)事件為“其中2 個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿(mǎn)1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),直線(xiàn):為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)和曲線(xiàn)的交點(diǎn)為,

(1)求直線(xiàn)和曲線(xiàn)的普通方程;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若對(duì)任意時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ABCD是矩形,PA=AB,EPB的中點(diǎn).

1)若過(guò)C,D,E的平面交PA于點(diǎn)F,求證:FPA的中點(diǎn);

2)若平面PAB⊥平面PBC,求證:BCPA

查看答案和解析>>

同步練習(xí)冊(cè)答案