某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
3
3
B、
4
3
3
C、2
3
D、4
3
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可知:該幾何體是以側(cè)視圖為底面的四棱錐,求出棱錐的底面面積和高,代入可得棱錐的體積.
解答: 解:由已知中的三視圖可知:
該幾何體是以側(cè)視圖為底面的四棱錐,
底面S=2×2=4,
高h(yuǎn)=
3
2
×2=
3
,
故體積V=
1
3
Sh=
4
3
3
,
故選:B
點(diǎn)評:本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)已知分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用符號(hào)“>,≥,<,≤”填空:
(1)
x
y
+
y
x
 
2(x,y∈R+);
(2)x+
1
x
 
-2(x<0);
(3)a+
1
a
 
2(a>1);
(4)(
a+b
2
)2
 
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定點(diǎn)P在圓周x2+y2=1上,若Q,R在x2+y2=1的內(nèi)部或圓周上,且△PQR為邊長是
3
2
的正三角形,則OQ2+OR2最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|lnx|,若
1
c
>a>b>1,則f(a),f(b),f(c)比較大小關(guān)系正確的是(  )
A、f(c)>f(b)>f(a)
B、f(b)>f(c)>f(a)
C、f(c)>f(a)>f(b)
D、f(b)>f(a)>f(c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對任意的x∈R,有f(-x)+f(x)=x2,且x∈(0,+∞)時(shí),f′(x)>x.若f(2-a)-f(a)≥2-2a,則實(shí)數(shù)a的取值范圍為( 。
A、[1,+∞)
B、(-∞,1]
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖(如圖),如果輸出的函數(shù)值在區(qū)間[
1
4
,1]上,則輸入的實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-2]
B、[-2,0]
C、[0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個(gè)工人每人加工一個(gè)零件,加工為一等品的概率分別為
2
3
3
4
,兩個(gè)零件是否被加工為一等品互相獨(dú)立,則這兩個(gè)工人加工的兩個(gè)零件中至少有一個(gè)一等品的概率為( 。
A、
11
12
B、
7
12
C、
5
12
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)算法的程序框圖如圖所示,若執(zhí)行該程序輸出的結(jié)果為
99
100
,則判斷框中應(yīng)填入的條件是( 。
A、i≤98?
B、i≤99?
C、i≤100?
D、i≤101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2+2
3
sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,求f(B)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案