用符號“>,≥,<,≤”填空:
(1)
x
y
+
y
x
 
2(x,y∈R+);
(2)x+
1
x
 
-2(x<0);
(3)a+
1
a
 
2(a>1);
(4)(
a+b
2
)2
 
a2+b2
2
考點:不等式比較大小
專題:不等式的解法及應(yīng)用
分析:根據(jù)基本不等式的性質(zhì),分別進(jìn)行判斷即可得到結(jié)論.
解答: 解:(1)根據(jù)基本不等式的性質(zhì)可知
x
y
+
y
x
≥2
x
y
y
x
=2
,當(dāng)且僅當(dāng)
x
y
=
y
x
,即x=y時,取等號.即
x
y
+
y
x
≥2,
(2)根據(jù)基本不等式的性質(zhì)可知x+
1
x
=-(-x-
1
x
≤-2
-x•
1
-x
=-2
,當(dāng)且僅當(dāng)-x=-
1
x
,即x=-1時,取等號;即x+
1
x
≤-2,
(3)∵a+
1
a
在a>1時,單調(diào)遞增,∴a+
1
a
>1+1=2,即a+
1
a
>2,
(4)(
a+b
2
)2
-
a2+b2
2
=-
a2-2ab+b2
4
=-
(a-b)2
4
≤0,
(
a+b
2
)2
a2+b2
2

故答案為:≥,≤,>,≤
點評:本題主要考查不等式的大小判斷,利用基本不等式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

低碳生活,從“衣食住行”開始.在國內(nèi)一些網(wǎng)站中出現(xiàn)了“碳足跡”的應(yīng)用,人們可以由此計算出自己每天的碳排放量,如家居用電的二氧化碳排放量(千克)=耗電度數(shù)×0.785,家用天然氣的二氧化碳排放量(千克)=天然氣使用立方數(shù)×0.19等.某校開展“節(jié)能減排,保護(hù)環(huán)境,從我做起!”的活動,該校高一、六班同學(xué)利用假期在東城、西城兩個小區(qū)進(jìn)行了逐戶的關(guān)于“生活習(xí)慣是否符合低碳排放標(biāo)準(zhǔn)”的調(diào)查.生活習(xí)慣符合低碳觀念的稱為“低碳家庭”,否則稱為“非低碳家庭”.經(jīng)統(tǒng)計,這兩類家庭占各自小區(qū)總戶數(shù)的比例P數(shù)據(jù)如下:
東城小區(qū)低碳家庭非低碳家庭西城小區(qū)低碳家庭非低碳家庭
比例P
1
2
1
2
比例P
4
5
1
5
(1)如果在東城、西城兩個小區(qū)內(nèi)各隨機(jī)選擇2個家庭,求這4個家庭中恰好有兩個家庭是“低碳家庭”的概率;
(2)該班同學(xué)在東城小區(qū)經(jīng)過大力宣傳節(jié)能減排的重要意義,每周“非低碳家庭”中有20%的家庭能加入到“低碳家庭”的行列中.宣傳兩周后隨機(jī)地從東城小區(qū)中任選5個家庭,記ξ表示5個家庭中“低碳家庭”的個數(shù),求Eξ和Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={y|y=tanx,0<x≤
π
4
},B={x|x2-x-2<0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校共有教師300人,其中中級教師有192人,高級教師與初級教師的人數(shù)比為5:4.為了解教師專業(yè)發(fā)展需求,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有中級教師64人,則該樣本中的高級教師人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,若輸入m,n的值分別為12,9,執(zhí)行算法后輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
a-x
+
x
(a為常數(shù)),對于定義域內(nèi)的任意兩個實數(shù)x1、x2,恒有|f(x1)-f(x2)|<1成立,用S(a)表示滿足條件的所有正整數(shù)a的和,則S(a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,下列命題:
①圖象C關(guān)于直線x=
11
12
π對稱;                  
②函數(shù)f(x)在區(qū)間(-
π
12
12
)內(nèi)是增函數(shù);
③將y=sin(2x-
π
3
)的圖象上的點橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍即可得到圖象C;
④圖象C關(guān)于點(
π
3
,0)對稱.
其中,正確命題的編號是
 
.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某設(shè)備零件的三視圖如圖所示,則這個零件的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
3
3
B、
4
3
3
C、2
3
D、4
3

查看答案和解析>>

同步練習(xí)冊答案