A. | B. | C. | D. |
分析 判斷函數(shù)的奇偶性,利用函數(shù)的單調(diào)性判斷即可.
解答 解:函數(shù)f(x)=x2(2x-2-x),可得:f(-x)=x2(2-x-2x)=-x2(2x-2-x)=-f(x)函數(shù)是奇函數(shù),排除B,D;
f(x)=x2,是增函數(shù)x∈(0,+∞),f(x)>0,y=2x-2-x是增函數(shù)x∈(0,+∞),y>0,f(x)=x2(2x-2-x)在(0,+∞)是增函數(shù),排除C.
故選:A,
點(diǎn)評 本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及函數(shù)的單調(diào)性的判斷與應(yīng)用,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值1,且為偶函數(shù) | B. | 有最大值3,且為偶函數(shù) | ||
C. | 有最小值1,且為非奇非偶函數(shù) | D. | 無最值,且為非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 2$\sqrt{6}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com