若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù)且滿足f(x)+g(x)=ex,其中e是自然對數(shù)的底數(shù),則有( )
A.f(e)<f(3)<g(-3)
B.g(-3)<f(3)<f(e)
C.f(3)<f(e)<g(-3)
D.g(-3)<f(e)<f(3)
【答案】分析:先由f(x)+g(x)=ex及函數(shù)的奇偶性,求出f(x),g(x),再依據(jù)函數(shù)單調(diào)性即可比較它們間的大。
解答:解:在f(x)+g(x)=ex①中,令x=-x,
則f(-x)+g(-x)=e-x,
又函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),
所以有-f(x)+g(x)=)=e-x②,
由①②解得,f(x)=(ex-e-x),g(x)=(ex+e-x).
易知f(x)為R上的增函數(shù),且e<3,所以f(e)<f(3),
又g(-3)=g(3)=(e3+e-3)>(e3-e-3)=f(3),
所以f(e)<f(3)<g(-3).
故選A.
點評:本題考查函數(shù)的奇偶性及單調(diào)性,根據(jù)已知條件求出函數(shù)解析式是解決本題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函數(shù)f(x)與g(x)的圖象的一個公共點恰好在x軸上,求a的值;
(Ⅱ)若函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的a的值;如果沒有,請說明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的兩根,且滿足0<p<q<
1a
,證明:當x∈(0,p)時,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)與g(x)=2-x互為反函數(shù),則f(x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)已知函數(shù)f(x)=-x2+2lnx.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)若函數(shù)f(x)與g(x)=x+
a
x
有相同極值點,
(i)求實數(shù)a的值;
(ii)若對于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函數(shù)f(x)與g(x)的圖象的一個公共點恰好在x軸上,求a的值;
(2)若函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的a的值;如果沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x),g(x)分別為R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=πx,請將f(3),f(4),g(0)按從大到小的順序排列
 

查看答案和解析>>

同步練習(xí)冊答案