【題目】在△ABC中,設(shè)內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大;
(2)若a= ,sin2B+cos2C=1,求△ABC的面積.

【答案】
(1)解:sin(A﹣ )﹣cos(A+ )=sin(A﹣ )﹣cos(2π﹣A- )=sin(A﹣ )﹣cos(A+

= sinA﹣ cosA﹣ cosA﹣ sinA=

即cosA=- ,

∵0<A<π,

∴A=


(2)解:由sin2B+cos2C=1,可得sin2B=2sin2C,

由正弦定理,得b2=2c2,即 .a(chǎn)= ,

cosA=- = ,

解得:c=1,b=

∴△ABC的面積S= bcsinA=


【解析】(1)利用誘導(dǎo)公式和兩角和與差公式化簡(jiǎn)即可求解角A的大。2)利用二倍角公式化簡(jiǎn)sin2B+cos2C=1,可得sin2B=2sin2C,利用正余弦定理即可求解b,c的大。纯汕蠼狻鰽BC的面積.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求a的取值范圍;
(3)在(2)的條件下,證明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O為數(shù)軸的原點(diǎn),A,B,M為數(shù)軸上三點(diǎn),C為線段OM上的動(dòng)點(diǎn).設(shè)x表示點(diǎn)C與原點(diǎn)的距離,y表示點(diǎn)C到點(diǎn)A的距離的4倍與點(diǎn)C到點(diǎn)B的距離的6倍之和.

(1)將y表示為x的函數(shù);

(2)要使y的值不超過70,實(shí)數(shù)x應(yīng)該在什么范圍內(nèi)取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線和橢圓有公共的焦點(diǎn),且離心率為

)求雙曲線的方程.

)經(jīng)過點(diǎn)作直線交雙曲線 兩點(diǎn),且的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬生產(chǎn)甲、乙兩種實(shí)銷產(chǎn)品.已知每件甲產(chǎn)品的利潤(rùn)為0.4萬元,每件乙產(chǎn)品的利潤(rùn)為0.3萬元,兩種產(chǎn)品都需要在A,B兩種設(shè)備上加工,且加工一件甲、乙產(chǎn)品在A,B設(shè)備上所需工時(shí)(單位:h)分別如表所示.

甲產(chǎn)品所需工時(shí)

乙產(chǎn)品所需工時(shí)

A設(shè)備

2

3

B設(shè)備

4

1

若A設(shè)備每月的工時(shí)限額為400h,B設(shè)備每月的工時(shí)限額為300h,則該廠每月生產(chǎn)甲、乙兩種產(chǎn)品可獲得的最大利潤(rùn)為(
A.40萬元
B.45萬元
C.50萬元
D.55萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處的切線方程為,求的值;

(Ⅱ)討論方程的解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,雙曲線E的參數(shù)方程為 (θ為參數(shù)),設(shè)E的右焦點(diǎn)為F,經(jīng)過第一象限的漸進(jìn)線為l.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l的極坐標(biāo)方程;
(2)設(shè)過F與l垂直的直線與y軸相交于點(diǎn)A,P是l上異于原點(diǎn)O的點(diǎn),當(dāng)A,O,F(xiàn),P四點(diǎn)在同一圓上時(shí),求這個(gè)圓的極坐標(biāo)方程及點(diǎn)P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且 =λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.

(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線FR與平面DEF所成角的正弦值為 ?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案