1.設(shè)函數(shù)f(x)=x2ex
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[-2,2]時,不等式f(x)<m恒成立,求m的取值范圍.

分析 (Ⅰ)先求出函數(shù)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)函數(shù)的不等式,求出其單調(diào)區(qū)間即可;
(Ⅱ)先求出f(x)在[-1,2]上的單調(diào)性,從而求出函數(shù)的最大值,即可求m的取值范圍.

解答 解:(Ⅰ)f′(x)=x(x+2)ex
令f′(x)>0,解得:x<-2或x>0,
令f′(x)<0,解得:-2<x<0,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-2)和(0,+∞),遞減區(qū)間為[-2,0].…(6分)
(Ⅱ)

x-2(-2,0)0(0,2)2
f′(x)0+
f(x)$\frac{4}{{e}^{2}}$單減極小值0單增4e2
…(10分)
因此x∈[-2,2],f(x)的最大值是4e2,
∵x∈[-2,2]時,不等式f(x)<m恒成立,
∴m>4e2…(12分)

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,考查恒成立問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知多面體ABCDE中,底面△ABC為等邊三角形,邊長為2,DE∥AC,AE∥DO,AE⊥面ABC,O為AC的中點,EA=1.
(1)若P為AB的中點,求證:EP∥面BDC;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知e是自然對數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)設(shè)T(x)=F(x)-f(x),當a=1+2e-1時,求證:T(x)在(0,+∞)上單調(diào)遞增;
(2)若?x≥1,F(xiàn)(x)≥f(x),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=xlnx+mx2-m在定義域內(nèi)不存在極值點,則實數(shù)m的取值范圍為(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=2x2-lnx的遞增區(qū)間是( 。
A.(-∞,-$\frac{1}{2}$)及(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)及($\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=x3-tx2+3x,函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,則實數(shù)t的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)的圖象過點(0,5),其導(dǎo)函數(shù)是f′(x),且滿足f′(x)<1-f(x),則不等式exf(x)>ex+4(e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x\;≤\;1\\{(x-a)^2},\;x>1\end{array}$函數(shù)g(x)=2-f(x),若函數(shù)y=f(x)-g(x)恰有4個零點,則實數(shù)a的取值范圍是(2,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.極坐標系中,曲線C1:ρ=2(sinθ+cosθ)與曲線C2:ρ=1交于點 A(ρ1,θ1),B(ρ2,θ2),其中θ1,θ2∈[-π,π).
(I)求ρ12與θ12的值;
(II)求極點O與點A,B組成的三角形面積.

查看答案和解析>>

同步練習冊答案