分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)利用導數(shù)可得函數(shù)f(x)在∈(-∞,m-ln2)遞減,在(m-ln2,+∞)遞增,f(x)的最小值為g(m)=f(m-ln2)=1+ln2-m,g(m)的最小值g(1)=ln2.
解答 解:(1)m=ln2時,f(x)=2ex-ln2-x,f′(x)=ex-1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)遞減,在(0,+∞)遞增;
(2)f′(x)=2ex-m-1,令f′(x)=2ex-m-1=0,得x=m-ln2.
當x∈(-∞,m-ln2)時,f′(x)<0,當x∈(m-ln2,+∞)時,f′(x)>0.
∴函數(shù)f(x)在∈(-∞,m-ln2)遞減,在(m-ln2,+∞)遞增,
f(x)的最小值為g(m)=f(m-ln2)=1+ln2-m,
∵m≤1,∴g(m)的最小值g(1)=ln2.
點評 本題考查了函數(shù)的單調性,最值,及零點問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | 4π | C. | 9π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016×2017 | B. | 20172 | C. | 2017×2018 | D. | 2018×2019 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 三角形 | B. | 四邊形 | C. | 五邊形 | D. | 六邊形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com