【題目】設(shè)數(shù)列{an}滿足:a1=1,an=e2an+1(n∈N*), ﹣ =n,其中符號(hào)Π表示連乘,如 i=1×2×3×4×5,則f(n)的最小值為 .
【答案】﹣
【解析】解:∵a1=1,an=e2an+1(n∈N*),∴an=e﹣2(n﹣1) . ﹣ =n,化為:f(n)= .
考查函數(shù)f(x)= ,f′(x)= (4x2﹣12x+3) ,令f′(x)=0,解得x1= ,x2= ,
∴0<x1<1,2<x1<3.
當(dāng)x<x1時(shí),f′(x)>0;當(dāng)x1<x<x2時(shí),f′(x)<0;
當(dāng)x>x2時(shí),f′(x)>0.即f(x)在(﹣∞,x1),(x2 , +∞)單調(diào)遞增,在(x1 , x2)上單調(diào)遞減,
∴h(x)min=h(x2),即f(n)min=min{f(2),f(3)},f(2)= >f(3)=﹣ .
∴f(n)min=f(3)=﹣ .
所以答案是:﹣ .
【考點(diǎn)精析】本題主要考查了數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 上頂點(diǎn)為B,若△BF1F2的周長為6,且點(diǎn)F1到直線BF2的距離為b. (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1 , A2是橢圓C長軸的兩個(gè)端點(diǎn),點(diǎn)P是橢圓C上不同于A1 , A2的任意一點(diǎn),直線A1P交直線x=m于點(diǎn)M,若以MP為直徑的圓過點(diǎn)A2 , 求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*)
(Ⅰ)求m的值;
(Ⅱ)若數(shù)列{bn}滿足 =log2bn(n∈N+),求數(shù)列{(an+6)bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)對x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計(jì)公式分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣x﹣1)ex .
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a( +1)+ex=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若曲線y=f(x)與直線y=kx相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)a≤e時(shí),證明:當(dāng)x∈(0,+∞),f(x)≥a(x﹣lnx).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C1: 一焦點(diǎn)與拋物線y2=8x的焦點(diǎn)F相同,若拋物線y2=8x的焦點(diǎn)到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動(dòng)點(diǎn),Q(1,3),則|PF|+|PQ|的最小值為( )
A.4
B.4
C.4
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com