設(shè)m,n是平面α內(nèi)的兩條不同直線;l1,l2是平面β內(nèi)的兩條相交直線,則α∥β的一個充分而不必要條件是(  )

A.m∥β且l1∥α B.m∥l1且n∥l2

C.m∥β且n∥β D.m∥β且n∥l2

 

B

【解析】對于選項A,不合題意;對于選項B,由于l1與l2是相交直線,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它們也可以異面,故必要性不成立,故選B;對于選項C,由于m,n不一定相交,故是必要非充分條件;對于選項D,由n∥l2可轉(zhuǎn)化為n∥β,同選項C,故不符合題意,綜上選B.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:解答題

如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點P(1,0)作直線AB分別交OA、OB于A、B兩點,當AB的中點C恰好落在直線y=x上時,求直線AB的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:選擇題

已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為n=(3,1,2),則下列點P中,在平面α內(nèi)的是(  )

A.(1,-1,1) B.(1,3,)

C.(1,-3,) D.(-1,3,-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:解答題

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,點M,N分別為A′B和B′C′的中點.

(1)證明:MN∥平面A′ACC′;

(2)求三棱錐A′-MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

設(shè)l,m,n表示不同的直線,α,β,γ表示不同的平面,給出下列四個命題:

①若m∥l,且m⊥α,則l⊥α;

②若m∥l,且m∥α,則l∥α;

③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;

④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,則l∥m.

其中正確命題的個數(shù)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點直線平面之間的位置關(guān)系(解析版) 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點,G,H分別是BC,CD上的點,且=2.求證:直線EG,F(xiàn)H,AC相交于一點.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點直線平面之間的位置關(guān)系(解析版) 題型:選擇題

如圖,正方體ABCD-A′B′C′D′的棱長為4,動點E、F在棱AB上,且EF=2,動點Q在棱D′C′上,則三棱錐A′-EFQ的體積(  )

A.與點E、F的位置有關(guān)

B.與點Q的位置有關(guān)

C.與點E、F、Q的位置都有關(guān)

D.與點E、F、Q的位置均無關(guān),是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

如圖,某幾何體的正視圖是平行四邊形,側(cè)視圖和俯視圖都是矩形,則該幾何體的體積為(  )

A.6 B.9 C.8 D.12

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-5合情推理與演繹推理(解析版) 題型:選擇題

四個小動物換座位,開始是猴、兔、貓、鼠分別坐在1、2、3、4號位置上(如圖),第1次前后排動物互換位置,第2次左右列互換座位,……這樣交替進行下去,那么第2014次互換座位后,小兔的位置對應(yīng)的是(  )

A.編號1 B.編號2 C.編號3 D.編號4

 

查看答案和解析>>

同步練習冊答案