【題目】若兩曲線y=x2﹣1與y=alnx﹣1存在公切線,則正實數(shù)a的取值范圍是

【答案】(0,2e)
【解析】解:兩曲線y=x2﹣1與y=alnx﹣1存在公切線,

y=x2﹣1的導(dǎo)數(shù)y′=2x,y=alnx﹣1的導(dǎo)數(shù)為y′= ,

設(shè)y=x2﹣1相切的切點為(n,n2﹣1)與曲線y=alnx﹣1相切的切點為(m,alnm﹣1),

y﹣(n2﹣1)=2n(x﹣n),即y=2nx﹣n2﹣1,

y﹣(alnm﹣1)= (x﹣m),即:y=

∵a>0,

有解即可,

令g(x)=x2(1﹣lnx),

y′=2x(1﹣lnx)+ =x(1﹣2lnx)=0,可得x= ,

∴g(x)在(0, )是增函數(shù);( ,++∞)是減函數(shù),g(x)的最大值為:g( )= ,

又g(0)=0,

∴0 ,∴0<a<2e.

所以答案是:(0,2e)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行運動會,其中三級跳遠的成績在8.0米(四舍五入,精確到0.1米)以上的進入決賽,把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機抽取兩名,記X表示兩人中進入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時,不等式f(x)≤ex恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+φ),且f(0)=1,f′(0)<0,則函數(shù) 圖象的一條對稱軸的方程為(
A.x=0
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于霧霾日趨嚴(yán)重,政府號召市民乘公交出行.但公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客需求.為此,某市公交公司在某站臺的60名候車乘客中進行隨機抽樣,共抽取10人進行調(diào)查反饋,所選乘客情況如下表所示:

組別

候車時間(單位:min)

人數(shù)

[0,5)

1

[5,10)

5

[10,15)

3

[15,20)

1


(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機取3人,求至少有一人來自第二組的概率;
(3)現(xiàn)從這10人中隨機抽取3人進行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),求函數(shù)g(x)的極值;
(2)是否存在常數(shù)a,使得x∈[1,+∞)時,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an=3an1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2
(2)是否存在一個實數(shù)t,使得 ,且{bn}為等差數(shù)列?若存在,則求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3x對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x∈

查看答案和解析>>

同步練習(xí)冊答案