已知直線l:y=kx+2(k為常數(shù))過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的上頂點B和左焦點F,且被圓x2+y2=4截得的弦長為L,若L≥
4
5
5
,則橢圓離心率e的取值范圍是( 。
A.(0,
5
5
]
B.(0,
2
5
5
]
C.(0,
3
5
5
]
D.(0,
4
5
5
]
圓x2+y2=4的圓心到直線l:y=kx+2的距離為d=
2
k2+1

∵直線l:y=kx+2被圓x2+y2=4截得的弦長為L,L≥
4
5
5

∴由垂徑定理,得2
r2-d2
4
5
5
,
2
4-d2
4
5
5
,解之得d2
16
5

4
k2+1
16
5
,解之得k2
1
4

∵直線l經(jīng)過橢圓的上頂點B和左焦點F,
∴b=2且c=
a2-b2
=-
2
k
,即a2=4+
4
k2

因此,橢圓的離心率e滿足e2=
c2
a2
=
4
k2
4+
4
k2
=
1
1+k2

∵k2
1
4
,∴0<
1
1+k2
4
5
,可得e2∈(0,
2
5
5
]
故選:B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

與雙曲線
x2
3
-
y2
1
=1
共焦點且過點(2
3
,
3
)
的橢圓方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點M、N.當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在x軸上,長軸長為12,離心率為
1
3
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
9
+
y2
16
=1
的焦點坐標為( 。
A.(0,5)和(0,-5)B.(5,0)和(-5,0)C.(0,
7
)和(0,-
7
D.(
7
,0)和(-
7
,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖:從橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點M向x軸作垂線,恰好通過橢圓的左焦點F1(-c,0),且
.
AB
.
OM
,則a,b,c必滿足______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知M是橢圓
x2
9
+
y2
5
=1
上一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,I是△MF1F2的內(nèi)心,延長MI交F1F2于N,則
|MI|
|NI|
等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
4
+
y2
3
=1
,左焦點為F,右頂點為C,過F作直線l與橢圓交于A,B兩點,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
16
=1
的準線方程是( 。
A.x=±
25
3
B.y=±
25
3
C.x=±
25
4
D.y=±
25
4

查看答案和解析>>

同步練習冊答案