若函數(shù)f(x)=sin ωx+cos ωx(ω>0)的最小正周期為π,則它的圖象的一個(gè)對(duì)稱中心為( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:選擇題
函數(shù)y=,x∈(-π,0)∪(0,π)的圖象可能是下列圖象中的( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:填空題
函數(shù)f(x)=x3-x2+ax-5在區(qū)間[-1,2]上不單調(diào),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題
已知函數(shù)f(x)=,數(shù)列{an}滿足:2an+1-2an+an+1an=0且an≠0.?dāng)?shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題
在同一坐標(biāo)系中畫出函數(shù)y=logax,y=ax,y=x+a的圖象,可能正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題
設(shè)集合A={x|x=3k+1,k∈N},B={x|x≤7,x∈Q},則A∩B等于( )
A.{1,3,5} B.{1,4,7} C.{4,7} D.{3,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:填空題
已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:
①f(2)=0;
②x=-4為函數(shù)y=f(x)圖象的一條對(duì)稱軸;
③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.
以上命題中所有正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:解答題
已知平面向量a=(,-1),b=.
(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k關(guān)于t的關(guān)系式k=f(t).
(2)求函數(shù)k=f(t)在t∈(-2,2)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題
國慶節(jié)放假,甲去北京旅游的概率為,乙、丙去北京旅游的概率分別為,,假定三人的行動(dòng)相互之間沒有影響,那么這段時(shí)間內(nèi)至少有1人去北京旅游的概率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com