【題目】如圖,在四棱錐P—ABCD中,APCD,ADBC,AB=BC=1,AD=2,E,F(xiàn)分別為AD,PC的中點(diǎn).求證:

(1)AP∥平面BEF;

(2)平面BEF⊥平面PAC.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

(1)設(shè),連接,通過(guò)中位線(xiàn)證明來(lái)證明平面.(2)證明四邊形為菱形,得到,利用得到,由此證得平面,從而證得平面平面.

證明:

(1)設(shè)ACBE于點(diǎn)O,連接OF,連接CE

因?yàn)?/span>AEBC=1,ADBC,所以四邊形ABCE為平行四邊形.

所以點(diǎn)OAC的中點(diǎn),又因?yàn)辄c(diǎn)FPC的中點(diǎn).所以OFAP

又因?yàn)?/span>OF平面BEFAP平面BEF所以AP平面BEF

(2)因?yàn)?/span>ADBC,EDBC=1,所以四邊形BCDE為平行四邊形.所以BECD

因?yàn)?/span>APCD,所以APBE.又因?yàn)樗倪呅?/span>ABCE為平行四邊形,ABBC,

所以四邊形ABCE為菱形.所以ACBE

又因?yàn)?/span>APBEAPACA,AP平面APC,AC平面APC

所以BE平面APC

因?yàn)?/span>BE平面BEF.所以平面BEF平面PAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,若橢圓上一點(diǎn)滿(mǎn)足,且橢圓過(guò)點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn) .

(1)求橢圓的方程;

(2)過(guò)點(diǎn)軸的垂線(xiàn),交橢圓,求證: , , 三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò),兩點(diǎn),且在兩坐標(biāo)軸上的四個(gè)截距之和是.

1)求圓的方程;

2)若為圓內(nèi)一點(diǎn),求過(guò)點(diǎn)被圓截得的弦長(zhǎng)最短時(shí)的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的二項(xiàng)展開(kāi)式的各二項(xiàng)式系數(shù)的和與各項(xiàng)系數(shù)的和均為

1)求展開(kāi)式中有理項(xiàng)的個(gè)數(shù);

2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖北省從2021年開(kāi)始將全面推行新高考制度,新高考“3+1+2”中的“2”要求考生從政治、化學(xué)、生物、地理四門(mén)中選兩科,按照等級(jí)賦分計(jì)入高考成績(jī),等級(jí)賦分規(guī)則如下:高考政治、化學(xué)、生物、地理四門(mén)等級(jí)考試科目的考生原始成績(jī)從高到低劃分為A,BC,D,E五個(gè)等級(jí),確定各等級(jí)人數(shù)所占比例分別為15%,35%,35%,13%2%,等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將AE等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)分,等級(jí)轉(zhuǎn)換分滿(mǎn)分為100.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:

等級(jí)

A

B

C

D

E

比例

15%

35%

35%

13%

2%

賦分區(qū)間

等比例轉(zhuǎn)換法是通過(guò)公式計(jì)算:,其中分別表示原始分區(qū)間的最低分和最高分,、分別表示等級(jí)分區(qū)間的最低分和最高分,Y表示原始分,T表示轉(zhuǎn)換分,當(dāng)原始分為、時(shí),等級(jí)分分別為、,假設(shè)小明同學(xué)的生物考試成績(jī)信息如下表:

考試科目

考試成績(jī)

成績(jī)等級(jí)

原始分區(qū)間

等級(jí)分區(qū)間

生物

75

B等級(jí)

設(shè)小明轉(zhuǎn)換后的等級(jí)成績(jī)?yōu)?/span>T,根據(jù)公式得:,所以(四舍五入取整),小明最終生物等級(jí)成績(jī)?yōu)?/span>77.已知某學(xué)校學(xué)生有60人選了政治,以期中考試成績(jī)?yōu)樵汲煽?jī)轉(zhuǎn)換該學(xué)校選政治的學(xué)生的政治等級(jí)成績(jī),其中政治成績(jī)獲得A等級(jí)的學(xué)生原始成績(jī)統(tǒng)計(jì)如下表:

成績(jī)

90

86

81

80

79

78

75

人數(shù)

1

2

1

1

2

1

1

1)從政治成績(jī)獲得A等級(jí)的學(xué)生中任取3名,求至少有2名同學(xué)的等級(jí)成績(jī)不小于93分的概率;

2)從政治成績(jī)獲得A等級(jí)的學(xué)生中任取4名,設(shè)4名學(xué)生中等級(jí)成績(jī)不小于93分人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場(chǎng)分析,若按50元/千克銷(xiāo)售,一個(gè)月能售出500千克,銷(xiāo)售單價(jià)每漲1元,月銷(xiāo)售量就減少10千克,設(shè)銷(xiāo)售單價(jià)為元/千克,月銷(xiāo)售利潤(rùn)為.

(1)當(dāng)銷(xiāo)售單價(jià)定為55元/千克時(shí),計(jì)算銷(xiāo)售量和月銷(xiāo)售利潤(rùn);

(2)求之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)銷(xiāo)售單價(jià)應(yīng)定為多少時(shí),月銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z滿(mǎn)足|z|= 的虛部為2,z所對(duì)應(yīng)的點(diǎn)在第一象限,

(1)z;

(2)z,z2,z-z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,cosABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求f(x)的最小正周期和單調(diào)增區(qū)間;

(Ⅱ)當(dāng)x[]時(shí),求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬(wàn)人其人口比例為32523,從這30萬(wàn)人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫(xiě)出具體過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案