5.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,設(shè){bn}的前n項(xiàng)和為Sn.求最小的正整數(shù)n,使得${S_n}>\frac{2016}{2017}$.

分析 (1)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式可得首項(xiàng)和公差的方程,解方程可得首項(xiàng)和公差,進(jìn)而得到通項(xiàng)公式;
(2)求得${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,再解不等式,即可得到所求n的最小值.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
依a2+a3=8,a5=3a2,
有$\left\{\begin{array}{l}2{a_1}+3d=8\\{a_1}+4d=3{a_1}+3d\end{array}\right.$,
解得a1=1,d=2,
從而{an}的通項(xiàng)公式為${a_n}=2n-1,n∈{N^*}$;                                
(2)因?yàn)?{b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
所以 ${S_n}=({\frac{1}{1}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})$
=$1-\frac{1}{2n+1}$.                                                              
令 $1-\frac{1}{2n+1}>\frac{2016}{2017}$,
解得n>1008,
故n的最小值為1009.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,注意運(yùn)用方程思想,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形邊長(zhǎng)為1,粗實(shí)線畫出的是一個(gè)幾何體的三視圖,則該幾何體體積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設(shè)備甲每天的租賃費(fèi)為2000元,設(shè)備乙每天的租賃費(fèi)為3000元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為23000元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點(diǎn)A.以O(shè)A為始邊作銳角β,其終邊與單位圓交于點(diǎn)B,AB=$\frac{{2\sqrt{5}}}{5}$.
(1)求cosβ的值;
(2)若點(diǎn)A的橫坐標(biāo)為$\frac{5}{13}$,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,其正視圖,側(cè)視圖均為直徑為2的半圓,俯視圖是直徑為2的圓,則該幾何體的表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}的公比為正數(shù),前n項(xiàng)和為Sn,a1+a2=2,a3+a4=6,則S8等于( 。
A.$81-27\sqrt{3}$B.54C.38-1D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)對(duì)定義域內(nèi)的任意x1,x2,當(dāng)f(x1)=f(x2)時(shí),總有x1=x2,則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù),下列命題:
①函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是單純函數(shù);
②當(dāng)a>-2時(shí),函數(shù)$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是單純函數(shù);
③若函數(shù)f(x)為其定義域內(nèi)的單純函數(shù),x1≠x2,則f(x1)≠f(x2);
④若函f(x)數(shù)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在x0使其導(dǎo)數(shù)f'(x0)=0.
其中正確的命題為①③.(填上所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在區(qū)間$({\frac{π}{6},\frac{π}{2}})$上是增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知矩形ABEF所在的平面與矩形ABCD所在的平面互相垂直,AD=2,AB=3,AF=$\frac{{3\sqrt{3}}}{2}$,M為EF的中點(diǎn),則多面體M-ABCD的外接球的表面積為16π.

查看答案和解析>>

同步練習(xí)冊(cè)答案