精英家教網 > 高中數學 > 題目詳情
已知Sn是數列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(Ⅰ)求Sn;
(Ⅱ)若數列{bn}滿足b1=2,bn+1=2an+bn,求bn
分析:(1)先利用S1=a1求得a1,再利用an=Sn-Sn-1求得當n≥2時an-an-1=1,判斷出{an}是a1=1,公差為1的等差數列,進而利用等差數列的性質求得數列的前n項的和.
(2)把(1)中求得的an代入bn+1=2an+bn整理可求得bn+1-bn=2n,進而用疊加法求得數列{bn}的通項公式.
解答:解:(Ⅰ)當n=1時,S1=a1=
a
2
1
+a1
2

∴a12-a1=0.由a1>0,
得a1=1,當n≥2時,an=Sn-Sn-1=
a
2
n
+an
2
-
a
2
n-1
+an-1
2

整理得an2-an-12-an-an-1=0,?(an+an-1)(an-an-1-1)=0
由an>0,只有an-an-1-1=0,即an-an-1=1
所以{an}是a1=1,公差為1的等差數列,an=n, Sn=
n2+n
2

(Ⅱ)由(Ⅰ)得bn+1-bn=2an=2n
所以(b2-b1)+(b3-b2)+(b4-b3)++(bn-bn-1)=21+22+23++2n-1
即bn-b1=2n-2,又b1=2,所以bn=2n
點評:本題主要考查了等差數列的前n項的和.解題的關鍵是利用an=Sn-Sn-1得出數列的遞推式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文科題)
(1)在等比數列{an }中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數n的值.
(2)已知Sn是數列{an}的前n項和,Sn=2n,求an

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,且有Sn=n2+n,則數列{an}的通項an=
2n
2n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,Sn=2n-1,則a10=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•崇明縣一模)已知Sn是數列{an}前n項和,a1=1,an+1=an+2(n∈N*),則
lim
n→∞
nan
Sn
=
2
2

查看答案和解析>>

同步練習冊答案