【題目】如圖,在邊長為a的菱形ABCD中,,E,F是PA和AB的中點。
(1)求證: EF||平面PBC ;
(2)求E到平面PBC的距離.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)欲證EF∥平面PBC,根據直線與平面平行的判定定理可知只需證EF與平面PBC內一直線平行,而EF∥PB,又EF平面PBC,PB平面PBC,滿足定理所需條件;(2)在面ABCD內作過F作FH⊥BC于H,又EF∥平面PBC,故點E到平面PBC的距離等于點F到平面PBC的距離FH.在直角三角形FBH中,求出FH即可,最后根據點E到平面PBC的距離等于點F到平面PBC的距離即可求出所求
試題解析:(1)證明:
又
故
(2)解:在面ABCD內作過F作
又 ,,
又,故點E到平面PBC的距離等于點F到平面PBC的距離FH。
在直角三角形FBH中,,
故點E到平面PBC的距離等于點F到平面PBC的距離等于。
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若函數f(x)有兩個零點x1 , x2(1)求滿足條件的最小正整數a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項都為正數的數列{an}滿足a1=1,an2﹣(2an﹣1﹣1)an﹣2an﹣1=0(n≥2,n∈N*),數列{bn}滿足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*)
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求數列{anbn}的前n項和為Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當時,為酒后駕車;當時,為醉酒駕車.某市交通管理部門于某天晚上8點至11點設點進行一次攔查行動,共依法查出60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數計入人數之內).
1)求此次攔查中醉酒駕車的人數;
2)從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取2人,求兩人中恰有1人醉酒駕車的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設點在線段上,且直線與平面所成角的正弦值為,求線段的長度;
(Ⅲ)判斷線段上是否存在一點,使得?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗中這20名男生被平均分成兩個小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:
(1)根據莖葉圖,分別寫出兩組學生身高的中位數;
(2)從該班身高超過的7名男生中隨機選出2名男生參加校籃球隊集訓,求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于(單位: )的男生中各隨機選出2人,設這4人中身高位于(單位: )的人數為,求隨機變量的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com