13.若平面區(qū)域$\left\{\begin{array}{l}{0≤x≤2}\\{-2≤y≤0}\\{y≥kx+2}\end{array}\right.$是一個(gè)梯形,則實(shí)數(shù)k的取值范圍是( 。
A.(-2,-1)B.(-∞,-1)C.(-2,+∞)D.(-∞,-2)

分析 先畫出不等式組表示的平面區(qū)域,由于y=kx-2不確定,是故(0,-2)的一組直線,結(jié)合圖形,得到符合題意的k的范圍.本題考查二元一次不等式表示平面區(qū)域,利用數(shù)形結(jié)合求參數(shù)的范圍,屬于基礎(chǔ)題.

解答 解:因?yàn)榭尚杏驗(yàn)樘菪危矫鎱^(qū)域$\left\{\begin{array}{l}{0≤x≤2}\\{-2≤y≤0}\\{y≥kx+2}\end{array}\right.$如圖:
其中A(2,-2),B(0,2).
由圖可知y=kx-2中恒過(0,2)點(diǎn),平面區(qū)域$\left\{\begin{array}{l}{0≤x≤2}\\{-2≤y≤0}\\{y≥kx+2}\end{array}\right.$是一個(gè)梯形,可得k<kAP=$\frac{2+2}{0-2}$=-2,
實(shí)數(shù)k的取值范圍是:(-∞,-2).
故選:D.

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,在拋物線C上取一點(diǎn)A,過A分別向x軸和準(zhǔn)線作垂線,垂足分別為M,N,連接AF并延長交拋物線于另一點(diǎn)B,若$\sqrt{5}$AM=2AN,則線段AB的長為( 。
A.20B.40C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x2+2x,那么,不等式f(x)<3的解集是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an-bn}是等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集I={1,2,3,4,5,6,7},集合M={3,5,6},集合N={1,3,4},則集合{2,7}=( 。
A.(∁IM)∩(∁IN)B.(∁IM)∪(∁IN)C.M∪ND.M∩(∁IN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且a1=1,{Sn-n2an}為常數(shù)列,則Sn=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足條件an+Sn=n2+3n,數(shù)列{bn}滿足條件bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,M為正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}的前2015項(xiàng)的和T2015≥M,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n+13;
(3)求{(30-an)•2n}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在鈍角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=7,c=5,sinC=$\frac{{5\sqrt{3}}}{14}$,則△ABC的面積等于( 。
A.$\frac{{25\sqrt{3}}}{2}$B.$\frac{{15\sqrt{3}}}{2}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{15}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案