【題目】為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時(shí)間后,記錄了兩組患者的生理指標(biāo)xy的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者.

(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)x的值小于1.7的概率;

(2)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大。(只需寫出結(jié)論)

(3)若指標(biāo)x小于1.7且指標(biāo)y大于60就說總生理指標(biāo)正常(例如圖中B、D兩名患者的總生理指標(biāo)正常),根據(jù)上圖,完成下面列聯(lián)表,并判斷能否有95%的把握認(rèn)為總生理指標(biāo)正常與是否服藥有關(guān),說明理由;

總生理指標(biāo)正常

總生理指標(biāo)不正常

總計(jì)

服藥

不服藥

總計(jì)

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:

【答案】(1);(2)服藥者指標(biāo)y數(shù)據(jù)的方差大于未服藥者指標(biāo)y數(shù)據(jù)的方差;(3)列聯(lián)表見解析,有95%的把握認(rèn)為總生理指標(biāo)正常與是否服藥有關(guān).

【解析】

(1)由圖求出在50名服藥患者中,指標(biāo)x的值小于1.7的人數(shù),由此能求出滿足條件的概率.

(2)由圖觀察可得結(jié)論.

(3)由題意列出列聯(lián)表,計(jì)算卡方的值,與臨界值比較得結(jié)論.

(1)由圖知,在服藥的50名患者中,指標(biāo)x的值小于1.7的有50-3=47人,

所以從服藥的50名患者中隨機(jī)選出一人,

此人指標(biāo)x的值小于1.7的概率P

(2)在這100名患者中,服藥者指標(biāo)y數(shù)據(jù)的方差大于未服藥者指標(biāo)y數(shù)據(jù)的方差.

(3)根據(jù)題中數(shù)據(jù)得到如下列聯(lián)表:

總生理指標(biāo)正常

總生理指標(biāo)不正常

總計(jì)

服藥

33

17

50

不服藥

22

28

50

總計(jì)

55

45

100

K2的觀測值=,

所以有95%的把握認(rèn)為總生理指標(biāo)正常與是否服藥有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(jià)(元)表示為長度的函數(shù);

(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入n,x的值分別為4,2,則輸出v的值為 (  )

A. 9B. 18C. 25D. 50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a11,an13an1.

(1)證明是等比數(shù)列并求{an}的通項(xiàng)公式;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證: ;

(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問點(diǎn)什么位置時(shí),二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一某班50名學(xué)生參加防疫知識(shí)競賽,將所有成績制作成頻率分布表如下:

分組

頻數(shù)

頻率

0.06

35

0.070

6

0.12

4

1)求頻率分布表中的值;

2)從成績在的學(xué)生中選出2人,請寫出所有不同的選法,并求選出2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中是常數(shù),,,函數(shù)的導(dǎo)函數(shù)為,且

,求曲線在點(diǎn)處的切線方程;

當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為x2(y2)21,直線l的方程為x2y0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.

()APB60°,試求點(diǎn)P的坐標(biāo);

()若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時(shí),求直線CD的方程.

查看答案和解析>>

同步練習(xí)冊答案