如圖,A,B,C,D四點(diǎn)在同一圓上,BC與AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上,若
EC
EB
=
1
3
,
ED
EA
=
1
2
,則
DC
AB
的值為
 
考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:由已知得△ECD∽△EAB,
DC
AB
=
EC
AE
=
DE
BE
=
1
3
BE
2DE
,從而B(niǎo)E=
6
DE
,由此能求出
DC
AB
=
DE
BE
=
DE
6
DE
=
6
6
解答: 解:∵A,B,C,D四點(diǎn)共圓
∴∠EDC=∠EBF,
又∵∠DEC=∠AEC 
∴△ECD∽△EAB,
又∵
EC
EB
=
1
3
,
ED
EA
=
1
2

DC
AB
=
EC
AE
=
DE
BE
=
1
3
BE
2DE
,
∴BE2=6DE2,即BE=
6
DE
,
DC
AB
=
DE
BE
=
DE
6
DE
=
6
6

故答案為:
6
6
點(diǎn)評(píng):本題考查兩線段長(zhǎng)的比值的求法,是中檔題,解題時(shí)要注意圓的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3sinx-log 
1
2
x零點(diǎn)的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為6,最小值為1(其中b≠0),則
c
b
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=cos(2x+
π
3
)圖象的一個(gè)對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x(2-x),求x<0時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)的極大值和極小值;
(3)當(dāng)a=3時(shí),函數(shù)圖象與直線y=m有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx-x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性與極值;
(3)當(dāng)a=2時(shí),求函數(shù)f(x)在[1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知元素為正整數(shù)的數(shù)集序列{1},{2,3},{4,5,6},{7,8,9,10},…從第二個(gè)數(shù)集開(kāi)始,每一個(gè)數(shù)集比前一個(gè)數(shù)集多一個(gè)元素,且每一個(gè)數(shù)集中最小的元素比前一個(gè)數(shù)集中最大的元素大1,則第n個(gè)數(shù)集中所有元素之和Sn=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案