16.不等式$|{\begin{array}{l}1&0&0\\{lgx}&{\frac{1}{x-1}}&{-2}\\ 1&1&x\end{array}}|≥0$的解集為$(0,\frac{2}{3}]∪(1,+∞)$.

分析 將行列式按第二行展開,求得不等式=$\frac{x}{x-1}$+2≥0,注意對數(shù)函數(shù)的定義域.

解答 解:$|{\begin{array}{l}1&0&0\\{lgx}&{\frac{1}{x-1}}&{-2}\\ 1&1&x\end{array}}|≥0$等價(jià)于lgx$|\begin{array}{l}{0}&{0}\\{1}&{x}\end{array}|$+$\frac{1}{x-1}$$|\begin{array}{l}{1}&{0}\\{1}&{x}\end{array}|$+2$|\begin{array}{l}{1}&{0}\\{1}&{1}\end{array}|$=$\frac{x}{x-1}$+2≥0,
即$\left\{\begin{array}{l}{x>0}\\{\frac{x}{x-1}+2≥0}\end{array}\right.$,
解得0<x≤$\frac{2}{3}$或x>1,
故不等式的解集為$(0,\frac{2}{3}]∪(1,+∞)$.
故答案為:$(0,\frac{2}{3}]∪(1,+∞)$.

點(diǎn)評 本題考查行列式的展開,考查不等式的解集,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$f(x)=\sqrt{3-{3^{|x-1|}}}$的定義域是[02].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若點(diǎn)P(sin2018°,cos2018°),則P在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的方程為x2+y2=4.
(1)求過點(diǎn)P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點(diǎn)P(1,2),且與圓C相交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)圓C上有一動點(diǎn)M(x0,y0),N(0,y0),若Q為MN的中點(diǎn),求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列選項(xiàng)中敘述錯誤的是( 。
A.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
B.命題“若x=0,則x2-x=0”逆否命題為真命題
C.若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n
D.若“p∧q”為假命題,則“p∨q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖:已知四棱錐P-ABCD,底面是邊長為6的正方形,PA=8,PA⊥面ABCD,
點(diǎn)M是CD的中點(diǎn),點(diǎn)N是PB的中點(diǎn),連接AM、AN、MN.
(1)求證:AB⊥MN;
(2)求二面角N-AM-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=x3-x2-x的單調(diào)增區(qū)間為(-∞,$\frac{1}{3}$),(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C的對邊依次為a,b,c,若a=3,$b=\sqrt{3}$,$A=\frac{π}{3}$,則角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C對應(yīng)的邊分別為a、b、c,4sin2$\frac{A+C}{2}-cos2B=\frac{7}{2}$
(Ⅰ)求角B的度數(shù)   
(Ⅱ)若b=$\sqrt{3}$,a+c=3,求a和c的值.

查看答案和解析>>

同步練習(xí)冊答案