(2013•烏魯木齊一模)已知函數(shù)f(x)=
0,x≤0
ex,x>0
,則使函數(shù)g(x)=f(x)+x-m有零點的實數(shù)m的取值范圍是( 。
分析:作出函數(shù)的圖象并根據(jù)圖象的交點及函數(shù)零點的判定定理即可得出.
解答:解:函數(shù)g(x)=f(x)+x-m的零點就是方程f(x)+x=m的根,
作出h(x)=f(x)+x=
x,當x≤0時
ex+x,當x>0時
的圖象,
觀察它與直線y=m的交點,得知當m≤0時,或m>1時有交點,
即函數(shù)g(x)=f(x)+x-m有零點.
故選D.
點評:數(shù)形結(jié)合并掌握函數(shù)零點的判定定理是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗.根據(jù)收集到的數(shù)據(jù)(如表),由最小二乘法求得回歸方程
y
=0.67x+54.9


現(xiàn)發(fā)現(xiàn)表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為
68
68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其 中A,B兩點之間的距離為5,則f(x)的遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)設(shè)平面區(qū)域D是由雙曲線y2-
x24
=1
的兩條漸近線和拋物線y2=-8x的準線所圍成的三角形(含邊界與內(nèi)部).若點(x,y)∈D,則目標函數(shù)z=x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)“a>0”是“a2<a”的( 。

查看答案和解析>>

同步練習冊答案