【題目】有一個轉(zhuǎn)盤游戲,轉(zhuǎn)盤被平均分成10等份(如圖所示),轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.游戲規(guī)則如下:兩個人參加,先確定猜數(shù)方案,甲轉(zhuǎn)動轉(zhuǎn)盤,乙猜,若猜出的結(jié)果與轉(zhuǎn)盤轉(zhuǎn)出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:

A.是奇數(shù)是偶數(shù)

B.4的整數(shù)倍數(shù)不是4的整數(shù)倍數(shù)

C.是大于4的數(shù)不是大于4的數(shù)

請回答下列問題:

(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?

(2)為了保證游戲的公平性,你認為應(yīng)制定哪種猜數(shù)方案?為什么?

(3)請你設(shè)計一種其他的猜數(shù)方案,并保證游戲的公平性.

【答案】(1) 應(yīng)選方案B ,不是4的整數(shù)倍數(shù)”;(2) 應(yīng)當(dāng)選擇方案A;

(3) 可以設(shè)計為:是大于5的數(shù)不是大于5的數(shù)

【解析】試題分析:(1) 方案A是奇數(shù)是偶數(shù)的概率均為,B不是4的整數(shù)倍數(shù)的概率為,4的整數(shù)倍數(shù)的概率為方案C是大于4的數(shù)的概率為,不是大于4的數(shù)的概率為,乙為了盡可能獲勝,應(yīng)選方案B,不是4的整數(shù)倍數(shù). (2) 為了保證游戲的公平性,應(yīng)當(dāng)選擇方案A.是奇數(shù)是偶數(shù)的概率均為 (3) “是大于5的數(shù)不是大于5的數(shù)發(fā)生的概率是一樣的,也可以保證游戲的公平性

試題解析:

(1)如題圖,方案A是奇數(shù)是偶數(shù)的概率均為=0.5;方案B不是4的整數(shù)倍數(shù)的概率為=0.8,“4的整數(shù)倍數(shù)的概率為=0.2;方案C是大于4的數(shù)的概率為=0.6,“不是大于4的數(shù)的概率為=0.4.乙為了盡可能獲勝,應(yīng)選方案B,不是4的整數(shù)倍數(shù).

(2)為了保證游戲的公平性,應(yīng)當(dāng)選擇方案A.因為方案A是奇數(shù)是偶數(shù)的概率均為0.5,從而保證了該游戲是公平的.

(3)可以設(shè)計為:是大于5的數(shù)不是大于5的數(shù)”,此方案也可以保證游戲的公平性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市的3個區(qū)共有高中學(xué)生20 000,3個區(qū)的高中學(xué)生人數(shù)之比為235,現(xiàn)要從所有學(xué)生中抽取一個容量為200的樣本調(diào)查該市高中學(xué)生的視力情況,試寫出抽樣過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人做游戲,下列游戲不公平的是(  )

A. 拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B. 同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

C. 從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D. 甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.

(1)求a;

(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下五個命題:

①在線性回歸模型中, 表示解釋變量對于預(yù)報變量變化的貢獻率,在對女大學(xué)生的身高預(yù)報體重的回歸分析數(shù)據(jù)中,算得,表明“女大學(xué)生的體重差異有64%是由身高引起的”

②隨機變量的方差和標(biāo)準(zhǔn)差都反映了隨機變量取值偏離于均值的平均程度,方差或標(biāo)準(zhǔn)差越小,則隨機變量偏離于均值的平均程度越大;

③正態(tài)曲線關(guān)于直線對稱,這個曲線只有當(dāng)時,才在軸上方;

④正態(tài)曲線的對稱軸由確定,當(dāng)一定時,曲線的形狀由決定,并且越大,曲線越“矮胖”;

⑤若隨機變量,且

其中正確命題的序號是

A. ②③ B. ①④⑤ C. ①④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(上、下底面均為矩形額棱臺)的專用術(shù)語,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一,以此算法,現(xiàn)有上下底面為相似矩形的棱臺,相似比為,高為3,且上底面的周長為6,則該棱臺的體積的最大值是( )

A. 14 B. 56 C. D. 63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos(θ-)=2.

(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)設(shè)兩圓交點分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),以橢圓內(nèi)一點為中點作弦,設(shè)線段的中垂線與橢圓相交于, 兩點.

(Ⅰ)求橢圓的離心率;

(Ⅱ)試判斷是否存在這樣的,使得 , 在同一個圓上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案