【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,內(nèi)容極為豐富,其中卷六《均輸》里有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”意思是:“5人分取5錢,各人所得錢數(shù)依次成等差數(shù)列,其中前2人所得錢數(shù)之和與后3人所得錢數(shù)之和相等.”(“錢”是古代的一種重量單位),則其中第二人分得的錢數(shù)是( )
A.
B.1
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,點(diǎn)P是平面A1B1C1D1內(nèi)的一個動點(diǎn),則三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為( )
A.1
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=﹣ 與曲線C1的交點(diǎn)為P,與曲線C2的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)y=f(x)定義域是R,當(dāng)x≥0時,f(x)=x(1﹣x).
(1)求出函數(shù)y=f(x)的解析式;
(2)寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間.(不用證明,只需直接寫出遞增區(qū)間即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,滿足tanA= .
(1)若A ,求角A;
(2)若a ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱AB、CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動,有以下四個命題:
①平面MB1P⊥ND1;②平面MB1P⊥平面ND1A1;③△MB1P在底面ABCD上的射影圖形的面積為定值;④△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線 是函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸.
(1)求函數(shù)f(x)的最大值及取得最大值時x的值;
(2)求函數(shù)f(x)在[0,π]上的減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)置的手機(jī)開機(jī)密碼若連續(xù)3次輸入錯誤,則手機(jī)被鎖定,5分鐘后,方可重新輸入.某日,小明忘記了開機(jī)密碼,但可以確定正確的密碼是他常用的4個密碼之一,于是,他決定逐個(不重復(fù))進(jìn)行嘗試.
(1)求手機(jī)被鎖定的概率;
(2)設(shè)第X次輸入后能成功開機(jī),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com