【題目】已知在平面直角坐標系中,橢圓C的方程為,以為極點, 軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設(shè)為橢圓上任意一點,求的最大值.

【答案】(1);(2).

【解析】試題分析:1直線的極坐標方程可以變形為,即,將 代入可得直線的普通方程;(2根據(jù)橢圓的參數(shù)方程可設(shè),則 ,由三角形的有界性可得答案.

試題解析:(1)根據(jù)題意,橢圓C的方程為+=1,則其參數(shù)方程為,(α為參數(shù));

直線l的極坐標方程為ρsin(θ+)=3,變形可得ρsinθcos+ρcosθsin=3,

ρsinθ+ρcosθ=3,將x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直線l的普通方程為x+y﹣6=0.

(2)根據(jù)題意,M(x,y)為橢圓一點,則設(shè)M(2cosθ,4sinθ),

|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,

分析可得,當sin(θ+)=﹣1時,|2x+y﹣1|取得最大值9.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù),滿足,則的最小值是( )

A. 0 B. C. -6 D. -3

【答案】C

【解析】

畫出可行域,向上平移目標函數(shù)到可行域邊界的位置,由此求得目標函數(shù)的最小值.

畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最小值為.故選C.

【點睛】

本小題主要考查線性規(guī)劃的知識,考查線性目標函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.畫可行域時,要注意判斷不等式所表示的范圍是在直線的哪個方位,不一定是三條直線圍成的三角形.還要注意目標函數(shù)化成斜截式后,截距和目標函數(shù)的對應(yīng)關(guān)系,截距最大時,目標函數(shù)不一定取得最大值,可能取得最小值.

型】單選題
結(jié)束】
12

【題目】已知,是橢圓長軸上的兩個端點,是橢圓上關(guān)于軸對稱的兩點,直線的斜率分別為,若橢圓的離心率為,則的最小值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點到達點的位置,且

1)證明:平面平面;

2為線段上一點,為線段上一點,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是定義在上的函數(shù),若存在,使得單調(diào)遞增,在上單調(diào)遞減,則稱上的單峰函數(shù),為峰點,包含峰點的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長度為:

(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點;若不是,說出原因;

(2)若函數(shù)上的單峰函數(shù),求實數(shù)的取值范圍;

(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當滿足何種條件時,所確定的含峰區(qū)間的長度不大于0.6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中,正確的命題是( )

A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲的組觀測數(shù)據(jù)如下表:

溫度

產(chǎn)卵數(shù)/個

經(jīng)計算得: , , ,線性回歸模型的殘差平方和, ,其中, 分別為觀測數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .

(1)若用線性回歸方程,求關(guān)于的回歸方程(精確到);

(2)若用非線性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好.

(ii)用擬合效果好的模型預測溫度為時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計為, ;相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計表:

男性家長

女性家長

合計

贊成

無所謂

合計

(1)據(jù)此樣本,能否有的把握認為“接受程度”與家長性別有關(guān)?說明理由;

(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..

參考數(shù)據(jù)

參考公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1ab>0)與雙曲線 C2x2有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點,若C1恰好將線段AB三等分,則橢圓C1的離心率為 (  )

A. e2 B. e2 C. e2 D. e2

查看答案和解析>>

同步練習冊答案