【題目】為了解男性家長和女性家長對高中學(xué)生成人禮儀式的接受程度,某中學(xué)團委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計表:

男性家長

女性家長

合計

贊成

無所謂

合計

(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長性別有關(guān)?說明理由;

(2)學(xué)校決定從男性家長中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..

參考數(shù)據(jù)

參考公式

【答案】(1)見解析;(2) .

【解析】試題分析: 根據(jù)條件得到, , , ,計算的值,對照臨界值即可得到結(jié)論

根據(jù)分層抽樣原理計算抽取“贊成”態(tài)度的人數(shù),“無所謂”態(tài)度的人數(shù),以及對應(yīng)基本事件總數(shù),再求概率值

解析:(1)由題: , ,

,所以,沒有的把握認(rèn)為“接受程度”與家長性別有關(guān).

(2)選出的人中持“贊成”態(tài)度的人數(shù)為: (人)

持“無所謂”態(tài)度的人數(shù)為: (人)

設(shè)持“贊成”態(tài)度的恩分別為, ;持“無所謂”態(tài)度的人分別為,

基本事件總數(shù)為: , , , , 種.

其中至多一人持“贊成”態(tài)度的有:

.

(或:其中兩人持“贊同”態(tài)度的人有種,故所求概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、,要求點的中點,點在邊上,點在邊時上,且.

1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費用均為元,試問如何設(shè)計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C的方程為,以為極點, 軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程;

(2)設(shè)為橢圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,上的最大值為,最小值為,試求,的值;

2)若,,且對任意恒成立,求的取值范圍.(用來表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)和直線m,且

a的值;

是否存在k的值,使直線m既是曲線的切線,又是曲線的切線?如果存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);

(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價值的信息,網(wǎng)絡(luò)知識付費近兩年呈現(xiàn)出爆發(fā)式的增長,為了了解網(wǎng)民對網(wǎng)絡(luò)知識付費的態(tài)度,某網(wǎng)站隨機抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:

(1)請完成上面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下,能否認(rèn)為網(wǎng)民對網(wǎng)絡(luò)知識付費的態(tài)度與年齡有關(guān)?

(2)在上述樣本中用分層抽樣的方法,從支持和反對網(wǎng)絡(luò)知識付費的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機選人,設(shè)這人中反對態(tài)度的人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲同學(xué)寫出三個不等式::,:,,然后將的值告訴了乙、丙、丁三位同學(xué),要求他們各用一句話來描述,以下是甲、乙、丙、丁四位同學(xué)的描述:

乙:為整數(shù);

丙:成立的充分不必要條件;

。成立的必要不充分條件;

甲:三位同學(xué)說得都對,則的值為__________

查看答案和解析>>

同步練習(xí)冊答案