函數(shù)f(x)=sin(2x+
π
2
)
的最小正周期和奇偶性分別是(  )
A、
π
2
,奇函數(shù)
B、π,偶函數(shù)
C、2π,奇函數(shù)
D、4π2,奇函數(shù)
考點(diǎn):正弦函數(shù)的圖象,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)誘導(dǎo)公式,余弦函數(shù)的周期性和奇偶性,得出結(jié)論.
解答: 解:函數(shù)f(x)=sin(2x+
π
2
)
=cos2x,故函數(shù)的最小正周期為
2
=π,且是偶函數(shù),
故選:B.
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式,余弦函數(shù)的周期性和奇偶性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金也不超過(guò)投資收益的20%,并用函數(shù)y=f(x)這一模型模擬獎(jiǎng)勵(lì)方案.
(Ⅰ)試用模擬函數(shù)y=f(x)的性質(zhì)表述獎(jiǎng)勵(lì)方案;
(Ⅱ)試分析下列兩個(gè)函數(shù)模型是否符合獎(jiǎng)勵(lì)方案的要求?說(shuō)明你的理由.(1)y=
x
120
+1
; (2)y=4lgx-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義ρ≥0,則由極坐標(biāo)方程θ=
π
3
,θ=
3
和ρ=8所表示的曲線圍成的區(qū)域的面積是( 。
A、
32π
3
B、
16π
3
C、
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-2x+4y+1=0,求:
(1)與圓C同心,且半徑為
2010
的圓的方程;
(2)與圓C同心,且被直線l:2x-y+1=0截得的弦長(zhǎng)為2
5
的圓的方程;
(3)過(guò)點(diǎn)P(3,1)與圓C相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若∠C=120°,c=2a,則(  )
A、a>b
B、a<b
C、a=b
D、a與b的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=-y的準(zhǔn)線方程是( 。
A、4x-1=0
B、4y-1=0
C、2x-1=0
D、2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,邊長(zhǎng)為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率是
2
3
,則陰影區(qū)域的面積為( 。
A、
3
4
B、
8
3
C、
2
3
D、無(wú)法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:直接寫(xiě)出答案 (1)|-
2
3
|÷|+
3
2
|
=
 
; (2)(
1
3
-
1
2
)×12=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,且a2=-5,a5=a3+6,則a1=( 。
A、-2B、-7C、-8D、-9

查看答案和解析>>

同步練習(xí)冊(cè)答案