10.已知集合M={y|y=2x},N={x|y=lg(x-x2),則M∩N為( 。
A.(0,1)B.(1,2)C.(0,+∞)D.[1,+∞)

分析 分別化簡(jiǎn)集合M,N,再利用交集的運(yùn)算性質(zhì)即可得出.

解答 解:集合M={y|y=2x}=(0,+∞),
由x-x2>0,解得0<x<1.
∴N={x|y=lg(x-x2)=(0,1),
則M∩N=(0,1).
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、不等式的解法、集合的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{5}$,且an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列:
(2)令bn=$\frac{1}{{a}_{n}}$-1,試求數(shù)列{n•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知sin(π+α)=-$\frac{3}{5}$.且α是第二象限角,tan($\frac{3π}{2}$+θ)=-2,且θ是第三象限的角,求sin(α-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(2x)=log4$\sqrt{\frac{10x-1}{3}}$,則f(5)的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)集合A={x|y=$\frac{1}{x-1}$+ln(x+3)},B={y|y=lg(2x-x2)},則A∩(∁RB)=(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{6}$,則AA1與平面AB1C1所成的角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中滿足$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}({x_1}≠{x_2})$的是(  )
A.f(x)=ax+bB.f(x)=xαC.f(x)=logax(a>0,a≠1)D.f(x)=x2+ax+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,BC是半圓O的直徑,AD⊥BC,垂足為D,$\widehat{AB}=\widehat{AF}$,BF與AD、AO分別交于點(diǎn)E、G.
(1)證明:∠DAO=∠FBC;
(2)證明:AE=BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),O是AE的中點(diǎn),以AE為折痕向上折起,使D為D′,且D′B=D′C.

(Ⅰ)求證:平面D′AE⊥平面ABCE;
(Ⅱ)求CD′與平面ABD′所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案