如圖,已知拋物線的焦點為F過點的直線交拋物線于A,B兩點,直線AF,BF分別與拋物線交于點M,N

(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為 證明:為定值
(1),;(2) 

試題分析:(1)把直線方程代入到拋物線方程中整理化簡,然后根據(jù)一元二次方程根與系數(shù)的關(guān)系可求;(2) 利用設(shè)點表示出斜率,根據(jù)根與系數(shù)關(guān)系代入化簡可求得定值
試題解析:(1)解:依題意,設(shè)直線AB的方程為
將其代入,消去,整理得從而   5分
(2)證明:

設(shè)M

設(shè)直線AM的方程為,將其代入,消去,
整理得 所以同理可得
由(1)得為定值   10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是拋物線上相異兩點,到y(tǒng)軸的距離的積為

(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線x=8y2的焦點坐標(biāo)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上兩點、關(guān)于直線對稱,且,則等于(           )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點F,點是兩曲線的交點,且軸,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線C:的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0, 2),則C的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的頂點在原點,焦點在軸上,拋物線上的點到焦點的距離為4,則的值為(  )
A.4B.-2C.4或-4D.12或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線與拋物線相交于A,B兩點,公共弦AB恰好過它們的公共焦點F,則雙曲線C的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

同步練習(xí)冊答案