(x-2)5的二項(xiàng)展開(kāi)式中含x3項(xiàng)的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為3求出展開(kāi)式中含x3項(xiàng)的系數(shù).
解答: 解:(x-2)5的展開(kāi)式的通項(xiàng)為T(mén)r+1=C5rx5-r(-2)r=C5r(-2)rx5-r
令5-r=3得r=2
故展開(kāi)式中含x3項(xiàng)的系數(shù)是C52×4=40
故答案為:40.
點(diǎn)評(píng):二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max{x1,x2,x3}為實(shí)數(shù)x1,x2,x3中的較大值,記f(x)=max{sinx,cosx,
sinx+cosx
2
},則f(x)min=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx-1與圓x2+y2+kx+my-4=0的交點(diǎn)M,N關(guān)于直線x+y=0對(duì)稱,則m+k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ω=
3
2
-
i
2
(其中i是虛數(shù)單位),則
2
ω
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(-2)=0,則(x-3)•f(x)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈(0,
1
2
)
時(shí),(1)logx(1-x)<logx(1+x),(2)log(1+x)x<log(1-x)x,(3)(1+x)
1
2
>(1-x)
1
2
,(4)(
1
2
)1+x>(
1
2
)1-x
則以上各式正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)對(duì)任意的x∈(-
π
2
,
π
2
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是( 。
A、
2
f(-
π
3
)<f(-
π
4
B、
2
f(
π
3
)<f(
π
4
C、f(0)>2f(
π
3
D、f(0)>
2
f(
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足約束條件
x≥0
x+3y≥4
3x+y≤4
,則z=2x-y的最大值是( 。
A、4
B、
4
3
C、1
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案