8.已知正數(shù)x,y滿足x+y=1,則$\frac{1}{x}$+$\frac{4}{y}$的最小值是9.

分析 有題意可得$\frac{1}{x}$+$\frac{4}{y}$=($\frac{1}{x}$+$\frac{4}{y}$)(x+y)=1+4+$\frac{y}{x}$+$\frac{4x}{y}$,再利用基本不等式即可求出.

解答 解:∵正數(shù)x,y滿足x+y=1,
則$\frac{1}{x}$+$\frac{4}{y}$=($\frac{1}{x}$+$\frac{4}{y}$)(x+y)=1+4+$\frac{y}{x}$+$\frac{4x}{y}$≥5+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$=9,當(dāng)且僅當(dāng)x=$\frac{1}{3}$,y=$\frac{2}{3}$時取等號,
故則$\frac{1}{x}$+$\frac{4}{y}$的最小值是9,
故答案為:9.

點評 本題考查了基本不等式的應(yīng)用,關(guān)鍵是掌握等號成立的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在明朝程大位《算法統(tǒng)宗》中有這樣的一首歌謠:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”.這首古詩描述的這個寶塔其古稱浮屠,本題一共有7層.每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?你算出頂層有3盞燈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥3}\\{y≤3}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,則2x+2y的最大值為( 。
A.10$\sqrt{2}$B.14C.5$\sqrt{6}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,an>0(n∈N+),公比q∈(0,1)且a2a4+2a3a5+a1a9=25,又a3與a5的等比中項為2,bn=log2an,數(shù)列{bn}的前n項和為Sn,則當(dāng){$\frac{{S}_{n}}{n}$}的前n項和Tn最大時,n的值為(  )
A.8B.9C.8或9D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一張儲蓄卡的密碼共有6位數(shù),每位數(shù)字都可從0~9中任選,某人在銀行自動提款機上取錢時,忘記了密碼的最后一位數(shù)字,求;
(1)第一次不對的情況下,第二次按對的概率;
(2)任意按最后一位數(shù)字,按兩次恰好按對的概率;
(3)他記得密碼的最后一位是偶數(shù),不超過2次就按對的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=sin($\frac{π}{3}$-x)+sin($\frac{π}{3}$+x)的最小正周期是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個不共線的向量.若$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+10$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=-2$\overrightarrow{{e}_{1}}$+8$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),試證:A,B,D三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解關(guān)于x的不等式:-3x2-2ax+a2≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線y2=20x的焦點到雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的距離為4,則該雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案