【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個(gè)不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價(jià)格(元/箱)和市場份額如下:
產(chǎn)地 | |||||
批發(fā)價(jià)格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.
(1)從該地批發(fā)市場銷售的富士蘋果中隨機(jī)抽取一箱,求該箱蘋果價(jià)格低于元的概率;
(2)按市場份額進(jìn)行分層抽樣,隨機(jī)抽取箱富士蘋果進(jìn)行檢驗(yàn),
①從產(chǎn)地共抽取箱,求的值;
②從這箱蘋果中隨機(jī)抽取兩箱進(jìn)行等級(jí)檢驗(yàn),求兩箱產(chǎn)地不同的概率;
(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預(yù)計(jì)明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價(jià)格也不變(不考慮其它因素).設(shè)今年蘋果的平均批發(fā)價(jià)為每箱元,明年蘋果的平均批發(fā)價(jià)為每箱元,比較的大小.(只需寫出結(jié)論)
【答案】(1)0.60;(2);(3)
【解析】
(1)價(jià)格低于元的概率等價(jià)于價(jià)格低于元的市場占有率之和;
(2)①根據(jù)分層抽樣的計(jì)算公式進(jìn)行計(jì)算,可得出從產(chǎn)地共抽出的箱數(shù);
②將5箱進(jìn)行編號(hào),列舉出選擇兩箱的所有可能,然后根據(jù)古典概型計(jì)算公式進(jìn)行求解;
(3)根據(jù)平均值計(jì)算公式進(jìn)行估算。
(1)設(shè)事件:“從該地批發(fā)市場銷售的富士蘋果中隨機(jī)抽取一箱,該箱蘋果價(jià)格低于160 元”.
由題意可得:=0.15+0.25+0.20=0.60 .
(2)①地抽取; 地抽取
所以 .
②設(shè)地抽取的3箱蘋果分別記為;地抽取的2箱蘋果分別記為,
從這5箱中抽取2箱共有10種抽取方法.
,
來自不同產(chǎn)地共有6種.
所以從這箱蘋果中隨機(jī)抽取兩箱進(jìn)行等級(jí)檢驗(yàn),兩箱產(chǎn)地不同的概率為: .
(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機(jī)抽取18名男性居民,12名女性居民對(duì)他們參加體育鍛煉的情況進(jìn)行問卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時(shí)間不超過5個(gè)小時(shí)),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時(shí)間超過5個(gè)小時(shí)),調(diào)查結(jié)果如下表:
(1)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為參加體育鍛煉與性別有關(guān)?
(2)從抽出的女性居民中再隨機(jī)抽取3人進(jìn)一步了解情況,記為抽取的這3名女性居民中甲類和丙類人數(shù)差的絕對(duì)值,求的數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·吉林期末]一個(gè)袋中裝有6個(gè)大小形狀完全相同的球,球的編號(hào)分別為1,2,3,4,5,6.
(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和為6的概率;
(2)先后有放回地隨機(jī)抽取兩個(gè)球,兩次取的球的編號(hào)分別記為和,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動(dòng)弦過焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn).
(Ⅰ)證明:點(diǎn)在定直線上;
(Ⅱ)當(dāng)最大時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時(shí)間為( 。
(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A. 天B. 天C. 天D. 天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}滿足:,且a1=1,則稱{an}為一個(gè)X數(shù)列.對(duì)于一個(gè)X數(shù)列{an},若數(shù)列{bn}滿足:b1=1,且,,則稱{bn}為{an}的伴隨數(shù)列.
(Ⅰ)若X數(shù)列{an}中a2=1,a3=0,a4=1,寫出其伴隨數(shù)列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}為一個(gè)X數(shù)列,{bn}為{an}的伴隨數(shù)列,證明:“{an}為常數(shù)列”是“{bn}為等比數(shù)列”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形所在的平面與等腰梯形所在的平面互相垂直,,.,.
(1)求證:平面;
(2)求二面角的余弦值;
(3)線段上是否存在點(diǎn),使得平面?不需說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,若直線上至少存在三個(gè)點(diǎn),使得是直角三角形,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com