14.如圖是一個(gè)算法流程圖,則輸出的S的值為3.

分析 模擬執(zhí)行程序,依次寫出每次循環(huán)得到的S,n的值,當(dāng)S=3,n=7時(shí)滿足條件S<n,退出循環(huán),輸出S的值為3,即可得解.

解答 解:模擬執(zhí)行程序,可得
n=1,S=12
執(zhí)行循環(huán)體,S=11,n=3
不滿足條件S<n,執(zhí)行循環(huán)體,S=8,n=5
不滿足條件S<n,執(zhí)行循環(huán)體,S=3,n=7
滿足條件S<n,退出循環(huán),輸出S的值為3.
故答案為:3.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,此類題目常采用寫出前幾次循環(huán)的結(jié)果,找規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a5+a6=10,則其前10項(xiàng)和S10的值是( 。
A.10B.50C.60D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為( 。
A.1-($\frac{1}{2}$)aB.($\frac{1}{2}$)a-1C.1-2aD.2a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個(gè)算法的程序框圖,該算法所輸出的結(jié)果是(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,則S的值為(  )
A.55B.65C.36D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某算法流程圖如圖所示,該程序運(yùn)行后,若輸出的x=15,則實(shí)數(shù)a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線經(jīng)過圓x2+y2-4x+2y=0的圓心,焦點(diǎn)到漸近線的距離為2,則雙曲線C的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P(sin2θ,sinθ)位于第三象限,那么θ是第( 。┫笙藿牵
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.南京東郊有一個(gè)寶塔,塔高60多米,九層八面,中間沒有螺旋的扶梯.寶塔的扶梯有個(gè)奧妙,每上一層,就少了一定的級(jí)數(shù).從第四層到第六層,共有28級(jí).第一層樓梯數(shù)是最后一層樓梯數(shù)的3倍.則此塔樓梯共有( 。
A.117級(jí)B.112級(jí)C.118級(jí)D.110級(jí)

查看答案和解析>>

同步練習(xí)冊(cè)答案