【題目】已知橢圓的離心率為,、是橢圓的左、右焦點,過作直線交橢圓于、兩點,若的周長為8.
(1)求橢圓方程;
(2)若直線的斜率不為0,且它的中垂線與軸交于,求的縱坐標的范圍;
(3)是否在軸上存在點,使得軸平分?若存在,求出的值;若不存在,請說明理由.
【答案】(1);(2);(3)存在,.
【解析】
試題分析: (1)由題意列出關于的方程組,求出值即可;(2)設出直線方程,與橢圓方程聯立后根據韋達定理將中點用斜率表示,進而中垂線用表示,最后縱坐標用表示再利用基本不等式求出最值;(3)假設存在,利用,列出關于的等式,該等式對任意都成立可求得符合條件的.
試題解析:(1)依題意得,解得,所以方程為.
(2)當不存在時,為原點,,當存在時,則,可得,則,
設弦的中點為,則,,則,令,有,
綜上所述,的縱坐標的范圍為.
(3)存在.假設存在,由軸平分可得,,即,有,
將式代入有,解得.
考點: 1、待定系數法求橢圓的標準方程、基本不等式求最值;2、解析幾何中的存在性問題.
【名師點晴】本題主要考查待定系數法求橢圓的標準方程、基本不等式求最值以及解析幾何中的存在性問題,屬于難題.解決存在性問題,先假設存在,推證滿足條件的結論,若結論正確則存在,若結論不正確則不存在(或者方程有解就存在,沒解就不存在),注意:①當條件和結論不唯一時要分類討論;②當給出結論而要推導出存在的條件時,先假設成立,再推出條件;③當條件和結論都不知,按常規(guī)方法題很難時采取另外的途徑.
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數算甲贏,否則算乙贏.
(1)若以表示和為6的事件,求;
(2)現連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問與是否為互斥事件?為什么?
(3)這種游戲規(guī)則公平嗎?試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率為,以其四個頂點為頂點的四邊形的面積等于.
(1)求橢圓的標準方程;
(2)過原點且斜率不為0的直線與橢圓交于兩點,是橢圓的右頂點,直線分別與軸交于點,問:以為直徑的圓是否恒過軸上的定點?若存在,請求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-1:幾何證明選講
已知中,,是外接圓劣弧AC上的點(不與點重合),延長至。
(1)求證: 的延長線平分;
(2)若,中邊上的高為,求外接圓的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從編號為0,1,2,…,79的80件產品中,采用系統(tǒng)抽樣的方法抽取容量為5的一個樣本,若編號為42的產品在樣本中,則該樣本中產品的最小編號為( 。
A.8
B.10
C.12
D.16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com