已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線2x-y-4=0上,求拋物線的標準方程.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.
(1)求橢圓C的標準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設(shè)E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,直線l1和l2相交于點M,l1⊥l2,點N∈l1,以A、B為端點的曲線段C上任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當?shù)淖鴺讼,求曲線段C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,直線,為平面上的動點,過點作的垂線,垂足為點,且.
(1)求動點的軌跡曲線的方程;
(2)設(shè)動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點,點C在拋物線的準線上,且BC∥x軸,證明:直線AC經(jīng)過原點O.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com