【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R.
(1)若函數(shù)y=f(x)的圖象與x軸無交點(diǎn),求a的取值范圍;
(2)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求a的取值范圍;
(3)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.
【答案】
(1)解:∵函數(shù)y=f(x)的圖象與x軸無交點(diǎn),
∴方程f(x)=0的判別式△<0,
∴16﹣4(a+3)<0,解得a>1,
∴a的取值范圍為(1,+∞);
(2)解:∵f(x)=x2﹣4x+a+3的對(duì)稱軸是x=2,
∴y=f(x)在[﹣1,1]上是減函數(shù),
∵y=f(x)在[﹣1,1]上存在零點(diǎn),
∴必有: ,即 ,
解得:﹣8≤a≤0,
故實(shí)數(shù)a的取值范圍為﹣8≤a≤0;
(3)解:若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2),
只需函數(shù)y=f(x)的值域?yàn)楹瘮?shù)y=g(x)值域的子集.
當(dāng)a=0時(shí),f(x)=x2﹣4x+3的對(duì)稱軸是x=2,∴y=f(x)的值域?yàn)閇﹣1,3],
下面求g(x)=bx+5﹣2b,x∈[1,4]的值域,
①當(dāng)b=0時(shí),g(x)=5,不合題意,舍
②當(dāng)b>0時(shí),g(x)=bx+5﹣2b的值域?yàn)閇5﹣b,5+2b],只需要 ,解得b≥6
③當(dāng)b<0時(shí),g(x)=bx+5﹣2b的值域?yàn)閇5+2b,5﹣b],只需要 ,解得b≤﹣3
綜上:實(shí)數(shù)b的取值范圍b≥6或b≤﹣3
【解析】(1)根據(jù)題意,可以將問題轉(zhuǎn)化為二次函數(shù)對(duì)應(yīng)的方程無實(shí)數(shù)根,利用△<0列出不等關(guān)系式,求解即可得到a的取值范圍;(2)根據(jù)二次函數(shù)的對(duì)稱軸為x=2,可以判斷出二次函數(shù)在去甲[﹣1,1]上的單調(diào)性,再根據(jù)零點(diǎn)的存在性定理列出不等式組,求解即可得到a的取值范圍;(3)根據(jù)題意,將問題轉(zhuǎn)化為函數(shù)y=f(x)的值域?yàn)楹瘮?shù)y=g(x)值域的子集,根據(jù)二次函數(shù)的性質(zhì),即可求得f(x)的值域,對(duì)于g(x),對(duì)其一次項(xiàng)系數(shù)進(jìn)行分類討論,分別得到g(x)的值域,分別求解,即可得到b的取值范圍.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四面體的棱長(zhǎng)為,為棱的中點(diǎn),過作其外接球的截面,則截面面積的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系用下圖的兩條線段表示;該商品在30天內(nèi)日銷售量Q(件)與時(shí)間t(天)之間的關(guān)系Q=﹣t+40.
(1)根據(jù)提供的圖象,寫出該商品每件的銷售價(jià)格P與時(shí)間t的函數(shù)關(guān)系式;
(2)問這30天內(nèi),哪天的銷售額最大,最大是多少?(銷售額=銷售價(jià)格×銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的個(gè)數(shù)是
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為,記,則下列說法正確的是( )
A. 事件“”的概率為 B. 事件“是奇數(shù)”與“”互為對(duì)立事件
C. 事件“”與“”互為互斥事件 D. 事件“”的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但是定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2 , x∈[1,2],與函數(shù)y=x2 , x∈[﹣2,﹣1]即為“同族函數(shù)”.下面的函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”的是( )
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若拋物線的焦點(diǎn)是橢圓左頂點(diǎn),求此拋物線的標(biāo)準(zhǔn)方程;
(2)若某雙曲線與橢圓共焦點(diǎn),且以為漸近線,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com