已知向量
a
=(2cos2x,
3
),
b
=(1,sin2x),函數(shù)f(x)=
a
b
,g(x)=
b
2

(Ⅰ)求函數(shù)g(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)增區(qū)間及最值.
考點:二倍角的正弦,平面向量數(shù)量積的坐標(biāo)表示、模、夾角,復(fù)合三角函數(shù)的單調(diào)性
專題:綜合題,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用二倍角公式化簡,再求函數(shù)g(x)的最小正周期;
(Ⅱ)利用數(shù)量積公式化簡函數(shù),再求f(x)的單調(diào)增區(qū)間及最值.
解答: 解:(Ⅰ)∵
b
=(1,sin2x),
∴g(x)=
b
2
=1+sin22x=-
1
2
cos4x+
3
2
,∴T=
π
2
;
(Ⅱ)f(x)=
a
b
=2cos2x+
3
sin2x=2sin(2x+
π
6
)+1,
由-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,可得-
π
3
+kπ≤x≤
π
6
+kπ,可得f(x)的單調(diào)增區(qū)間為[-
π
3
+kπ,
π
6
+kπ](k∈Z),
函數(shù)的最大值為3,最小值為-1.
點評:本題考查二倍角公式、數(shù)量積公式化簡函數(shù),考查三角函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3-i
2+i
的實部與虛部之和為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),
(1)比較f(-3)與f(π)的大小
(2)若f(1)<f(lgx),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“(2x+1)(x-3)<0”的一個必要不充分條件是( 。
A、-
1
2
<x<3
B、-
1
2
<x<4
C、-3<x<
1
2
D、-1<x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-mx-2=0在x∈[0,1]有解;命題q:f(x)=log2(x2-2mx+
1
2
)在x∈[1,+∞)單調(diào)遞增;若“¬p”為真命題,“p∨q”是真命題,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a<0時,解不等式ax2-(2a+2)x+4>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“φ=
π
2
”是“曲線y=sin(2x+φ)的圖象關(guān)于y軸對稱”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)為奇函數(shù),且當(dāng)x>0時,f(x)=log2(x-1)+x2-a,且f(2)=1,則f(-3)=( 。
A、-1B、1C、-7D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,anan+1=(
1
2
n,求an通項公式.

查看答案和解析>>

同步練習(xí)冊答案