分析 (1)解方程x2-3x=0即可.
(2)求解△=m2-4(-m+3)<0即可.
(3)根據(jù)二此函數(shù)性質(zhì)得出得$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\\{f(2)>0}\end{array}\right.$,求解即可.
解答 解:(1)當(dāng)m=3,f(x)=x2-3x,
解方程x2-3x=0得:x=0,或x=3
所以當(dāng)m=3時(shí),求函數(shù)f(x)的零點(diǎn)為x=0,和x=3,
(2)由函數(shù)f(x)沒有零點(diǎn),知函數(shù)f(x)=x2-mx-m+3,m∈R.
與x軸無交點(diǎn)△=m2-4(-m+3)<0,
∴m2+6m-12<0,
∴-6<m<2
實(shí)數(shù)m的取值范圍是{m|-6<m<2}
(3)有題意得$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\\{f(2)>0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-m+3>0}\\{1-m-m+3<0}\\{4-2m-m+3>0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{m<3}\\{m>2}\\{m<\frac{7}{3}}\end{array}\right.$,
∴{m|2$<m<\frac{7}{3}$ }
實(shí)數(shù)m的取值范圍是{m|2$<m<\frac{7}{3}$ }
點(diǎn)評(píng) 本題把二次函數(shù)與二次方程有機(jī)的結(jié)合了起來,有方程的根與函數(shù)零點(diǎn)的關(guān)系可知,求方程的根,就是確定函數(shù)的零點(diǎn),也就是求函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>-2 | B. | a≥-2 | C. | a<-2 | D. | a≤-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com