【題目】某企業(yè)準備投入適當?shù)膹V告費對產品進行促銷,在一年內預計銷售量Q(萬件)與廣告費x(萬元)之間的函數(shù)關系為Q= (x>1),已知生產該產品的年固定投入為3萬元,每生產1萬件該產品另需再投入32萬元,若每件銷售價為“年平均每件生產成本(生產成本不含廣告費)的150%”與“年平均每件所占廣告費的50%”之和.
(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數(shù);(年利潤=銷售收入-成本)
(2)當年廣告費為多少萬元時,企業(yè)的年利潤最大?最大年利潤為多少萬元?
【答案】(1)W=49.5- (x>1)(2)當年廣告費為8萬元時,企業(yè)年利潤最大,為41.5萬元.
【解析】試題分析:(1)成本為廣告費、固定投入、再投入三部分,收入為售價與銷量的乘積,分別列式可得利潤函數(shù)(2)利用基本不等式求最值,注意等于號的取法
試題解析:(1)由題意,產品的生產成本為(32Q+3)萬元,
銷售單價為×150%+×50%
故年銷售收入為y=·Q=48Q++x
∴W=y(tǒng)-(32Q+3)-x=16Q+-=49.5-- (x>1)
(2)∵W=49.5-≤49.5-2=49.5-8=41.5.
當且僅當=,即x=8時,W有最大值41.5
∴當年廣告費為8萬元時,企業(yè)年利潤最大,為41.5萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關系有如下規(guī)定:當時,擁擠等級為“優(yōu)”;當時,擁擠等級為“良”;當時,擁擠等級為“擁擠”;當時,擁擠等級為“嚴重擁擠”。該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù):
(Ⅰ)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
游客數(shù)量 (單位:百人) | ||||
天數(shù) | ||||
頻率 |
(Ⅱ)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=si n-2cos2+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關于直線x=1對稱,求當x∈時,y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點的橢圓經過點,且點為其右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在平行于的直線,使得直線與橢圓有公共點,且直線與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:對于任意且時,,.
(1)若,求證:為等比數(shù)列;
(2)若.
① 求數(shù)列的通項公式;
② 是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù));在以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(I)求曲線的極坐標方程和曲線的直角坐標方程;
(II)若射線與曲線,的交點分別為(異于原點),當斜率時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,,點()在直線y = x上,
(Ⅰ)計算a2,a3,a4的值;
(Ⅱ)令bn=an+1﹣an﹣1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設Sn、Tn分別為數(shù)列{an}、{bn}的前n項和,是否存在實數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.
(1)求橢圓的方程;
(2)設不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com