【題目】(本小題滿分12分)

將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE

)求證:DE⊥AC;

)求DE與平面BEC所成角的正弦值;

)直線BE上是否存在一點M,使得CM∥平面ADE,若存在,求點M的位置,不存在請說明理由.

【答案】1)以A為原點,以射線AB,AC,AE為坐標軸建立空間直角坐標系,

C作平面ABD的垂線,垂足為F,則FBC的中點,,所以點C的坐標為

故:DE⊥AC23)存在MBE的中點,使得CM//平面ADE

【解析】

試題以A為原點,以射線AB,AC,AE為坐標軸建立空間直角坐標系,

C作平面ABD的垂線,垂足為F,則FBC的中點,,

所以點C的坐標為。

1,故:DE⊥AC。

2

設(shè)平面BCE的法向量為,則,

設(shè)線面角為

3)設(shè),則。若CM//平面ADE,則,所以,故存在MBE的中點,使得CM//平面ADE。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: =1的右焦點F,過焦點F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點,C在點P處的切線為l,l與l0相交于點M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標原點)的面積是否存在最小值?若存在,請求出最小及此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.

(1)求證:AC⊥PB;
(2)若PB=PC= ,問在側(cè)棱PB上是否存在一點M,使得二面角M﹣AD﹣B的余弦值為 ?若存在,求出 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1中,點E是棱A1B1的中點,則直線AE與平面BDD1B1所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:α∈R,sin(π﹣α)=cosα;命題q:“0<a<4”是“關(guān)于x的不等式ax2+ax+1>0的解集是實數(shù)集R”的充分必要條件,則下面結(jié)論正確的是(
A.p是假命題
B.q是真命題
C.“p∧q”是假命題
D.“p∨q”是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

若函數(shù)有唯一零點,則以下四個命題中正確的是______(填寫正確序號)

①. ②.函數(shù)處的切線與直線平行

③.函數(shù)上的最大值為

④.函數(shù)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運數(shù)字.
(1)求你的幸運數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數(shù)字則記0分,求得分X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為上任一點軸上的射影為中點為

(1)求動點的軌跡的方程;

(2)直線從下到上依次交于,與交于,直線從下到上依次交于,與交于,的斜率之積為,設(shè)的面積分別為,是否存在使得成等比數(shù)列?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案