【題目】(本小題滿分12分)
將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.
(Ⅰ)求證:DE⊥AC;
(Ⅱ)求DE與平面BEC所成角的正弦值;
(Ⅲ)直線BE上是否存在一點M,使得CM∥平面ADE,若存在,求點M的位置,不存在請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C: =1的右焦點F,過焦點F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點,C在點P處的切線為l,l與l0相交于點M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標原點)的面積是否存在最小值?若存在,請求出最小及此時點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)若PB=PC= ,問在側(cè)棱PB上是否存在一點M,使得二面角M﹣AD﹣B的余弦值為 ?若存在,求出 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時二面角E﹣AC﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:α∈R,sin(π﹣α)=cosα;命題q:“0<a<4”是“關(guān)于x的不等式ax2+ax+1>0的解集是實數(shù)集R”的充分必要條件,則下面結(jié)論正確的是( )
A.p是假命題
B.q是真命題
C.“p∧q”是假命題
D.“p∨q”是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
若函數(shù)有唯一零點,則以下四個命題中正確的是______(填寫正確序號)
①. ②.函數(shù)在處的切線與直線平行
③.函數(shù)在上的最大值為
④.函數(shù)在 上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運數(shù)字.
(1)求你的幸運數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數(shù)字則記0分,求得分X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的焦點為上任一點在軸上的射影為中點為,.
(1)求動點的軌跡的方程;
(2)直線過與從下到上依次交于,與交于,直線過與從下到上依次交于,與交于,,的斜率之積為,設(shè)的面積分別為,是否存在使得成等比數(shù)列?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com