f(x,y)=0(或:y=f(x))在其上兩個不同點(diǎn)處的切線重合,則稱這條切線為曲線,f(x,y)=0(或y=f(x)>的自公切線,下列方程的曲線存在公切線的序號為
 
(填上所有正確的序號)①y-x2=|x;②|x|+1=
x-y2
; ③y=3sinx+4cosx;④x2-y2=1; ⑤y=xcosx.
分析:通過畫出函數(shù)圖象,觀察其圖象是否滿足在其上圖象上是否存在兩個不同點(diǎn)處的切線重合,從而確定是否存在自公切線,從而得到結(jié)論.
解答:解:函數(shù) y=x2-|x|的圖象如下左圖顯然滿足要求,故①存在;
而對于方程|x|+1=
4-y2
,其表示的圖形為圖中實(shí)線部分,不滿足要求,故②不存在
函數(shù)y=3sinx+4cosx的一條自公切線為y=5,故③存在;
x2-y2 =1為等軸雙曲線,不存在自公切線,故④不存在.  
函數(shù) y=xcosx的圖象如下右圖顯然滿足要求,存在自公切線,故⑤存在;精英家教網(wǎng)
  精英家教網(wǎng)
故答案為:①③⑤
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及新定義自公切線,題目比較新穎,解題的關(guān)鍵是理解新的定義,同時考查了數(shù)形結(jié)合的思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x,y)=0(或y=f(x))在其上兩個不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線存在自公切線的序號為
 
(填上所有正確的序號),①y=x2-|x|;②y=|x2-x|;③y=3sinx+4cosx;④x2-y2 ;⑤|x|+1=
4-y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)若在曲線f(x,y)=0(或y=f(x))上兩個不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
4-
y
2
 

對應(yīng)的曲線中存在“自公切線”的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在曲線f(x,y)=0(或y=f(x))上兩個不同點(diǎn)處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切線的是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)若曲線f(x,y)=0(或y=f(x))在其上兩個不同的點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0(或y=f(x))的自公切線,則下列方程的曲線存在自公切線的有
③④
③④
(填上所有正確的序號)
|x|+1=
4-y2
  ②y2-x2 ③y=2sinx-3cosx   ④y=xcosx.

查看答案和解析>>

同步練習(xí)冊答案