9.函數(shù)y=x2-2x-3在區(qū)間[-1,4]的最值為( 。
A.最小值為-5,最大值為-4B.最小值為0,最大值為4
C.最小值為-4,最大值為5D.最小值為0,最大值為5

分析 對二次函數(shù)解析式進(jìn)行配方得到y(tǒng)=(x-1)2-4,這樣即可求出該函數(shù)在[-1,4]上的最值.

解答 解:y=x2-2x-3=(x-1)2-4;開口向下,對稱軸為:x=1,
∴x=1時,函數(shù)y取最小值-4;
x=4時,函數(shù)y取最大值5.
故選:C.

點(diǎn)評 考查二次函數(shù)的最值,以及用配方求二次函數(shù)最值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=cosx+x,則f′(π)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a=({1,m})$,$\overrightarrow b=({3,-2})$,且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則m等于( 。
A.-8B.-6C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(Ⅰ)已知$cosα=\frac{{\sqrt{5}}}{3},α∈(-\frac{π}{2},0)$,求sin(π-α);
(Ⅱ)已知$sin(θ+\frac{π}{4})=\frac{3}{5}$,求$cos(\frac{π}{4}-θ)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(2,+∞)上單調(diào)遞減的是( 。
A.$y=\frac{1}{x}$B.y=lg|x|C.y=-x2+1D.y=e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若正△ABC的邊長為a,則△ABC的平面直觀圖△A′B′C′的面積為=$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,側(cè)棱AA1=2,點(diǎn)D為AB的中點(diǎn),點(diǎn)E在線段AA1上,AE=λAA1(λ為實(shí)數(shù)).
(1)求證:不論λ取何值時,恒有CD⊥B1E;
(2)當(dāng)$λ=\frac{1}{3}$時,記四面體C1-BEC的體積為V1,四面體D-BEC的體積為V2,求V1:V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z滿足$\frac{z-1}{z+1}=i$,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)點(diǎn)在( 。
A.第一、二象限B.第三、四象限C.實(shí)軸D.虛軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.共享單車是指企業(yè)與政府合作,在公共服務(wù)區(qū)等地方提供自行車單車共享服務(wù).現(xiàn)從6輛黃色共享單車和4輛藍(lán)色共享單車中任取4輛進(jìn)行檢查,則至少有兩個藍(lán)色共享單車的取法種數(shù)是115.

查看答案和解析>>

同步練習(xí)冊答案