A. | $\frac{4}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
分析 根據(jù)條件分別求出直線AE和BN的方程,求出N,E的坐標(biāo),利用|OE|=3|ON|的關(guān)系建立方程進(jìn)行求解即可.
解答 解:因?yàn)镻F⊥x軸,所以設(shè)M(-c,t),
則A(-a,0),B(a,0),AE的斜率$k=\frac{t}{a-c}$,
則AE的方程為$y=\frac{t}{a-c}(x+a)$,令x=0,則$y=\frac{ta}{a-c}$,
即$E(0,\frac{ta}{a-c})$,
BN的斜率$k=-\frac{t}{a+c}$,則BN的方程為$y=-\frac{t}{a+c}(x-a)$,
令x=0,則$y=\frac{ta}{a+c}$,即$N(0,\frac{ta}{a+c})$,
因?yàn)閨OE|=3|ON|,所以$3|{\frac{ta}{a+c}}|=|{\frac{ta}{a-c}}|$,即$\frac{3}{a+c}=\frac{1}{c-a}$,
則3(c-a)=a+c,即c=2a,則離心率$e=\frac{c}{a}=2$.
故選C.
點(diǎn)評 本題主要考查雙曲線離心率的計(jì)算,根據(jù)條件求出直線方程和點(diǎn)N,E的坐標(biāo)是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1),(0,0) | B. | {(-1,1),(0,0)} | C. | {x=-1或0,y=1或0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,x2<0 | B. | ?x>0,x2≤0 | C. | ?x0>0,x2<0 | D. | ?x0>0,x2≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{9}{5}$ | C. | 3 | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$ | B. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$ | ||
C. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$ | D. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4) | B. | (-4,4] | C. | (-∞,-4)∪[2,+∞) | D. | [-4,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com