【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.

(1)以頻率為概率,若從這名觀眾中隨機抽取名進行調(diào)查,求這名觀眾中體育迷人數(shù)的分布列;

(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認為是體育迷與性別有關(guān)系嗎?

附表及公式:

.

【答案】(1)見解析(2)不能

【解析】分析:(1)由題意,用頻率代替概率可得出從觀眾中抽取到一名“體育迷”的概率是為

,.由于X~B(3,),從而給出分布列,再由公式計算出期望與方差即可(2)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入公式計算得出K2,與3.841比較即可得出結(jié)論.

解:(1)由圖可得,觀眾為體育迷的概率為,

的可能取值為,,

.

.

.

的分布為

(2)由題意得如下列聯(lián)表:

非體育迷

體育迷

合計

合計

的觀測值

故不能在犯錯概率不超過的前提下認為是體育迷與性別有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))在處取得極值.

(1)求的單調(diào)區(qū)間;

(2)討論的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:

質(zhì)量指標(biāo)值m

m<185

185≤m<205

m≥205

等級

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140}),則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線為也為函數(shù)的圖象的切線,必須滿足

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點,以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

B. 在線性回歸分析中,回歸直線不一定過樣本點的中心

C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好

D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為落實國家“精準扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長

(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域

(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知z0=2+2i,|zz0|=.

(1)求復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點的軌跡;

(2)z為何值時|z|有最小值,并求出|z|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為

(1)求的值;

(2)求上的單調(diào)區(qū)間;

(3)求上的最大值.

查看答案和解析>>

同步練習(xí)冊答案