精英家教網 > 高中數學 > 題目詳情
關于直線a、b,以及平面M、N,給出下列命題:
①若a//M, b//M,則a//b      ②若a//M, b⊥M,則ab
③若a//b, b//M,則a//M      ④若a⊥M, a//N,則M⊥N
其中正確的命題的個數為(   )
A.0B.1C.2D.3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖6,已知正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1。
(1)求證:平面AB1D⊥平面B1BCC1
(2)求證:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

三棱錐P-ABC中,三側棱PA、PB、PC兩兩相互垂直,三側面面積分
別為S1、S2、S3,底面積為S,三側面與底面分別成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求證:cos2α+cos2β+cos2γ=1;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)在直三棱柱中,,直線與平面角;

(1)求證:平面平面;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE

為平行四邊形,DC平面ABC ,
(1)證明:平面ACD平面;
(2)記,表示三棱錐A-CBE的體積,求的表達式;
(3)當取得最大值時,求證:AD=CE.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,
(1)   證明:AD⊥平面PAB;
(2)   求異面直線PCAD所成的角的大。
(3)   求二面角P—BD—A的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖:在四棱錐中,底面為菱形,與底面垂直,
為棱的中點,的中點,的交點,

(1)求證:
(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題











(1)證明:;
(2)若上的動點,與平面所成最大角的正切值為,求銳二面角的余弦值;
(3)在(2)的條件下,設,求點到平面的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若某幾何體的三視圖(單位:cm)如圖所示,則此
幾何體的體積是       

查看答案和解析>>

同步練習冊答案