如圖,在三棱錐中,=90°,.
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
(1)取AB中點D,連結(jié)PD,CD.
AP=BP,
PDAB.
AC=BC.
CDAB.
PDCDD.
AB⊥平面PCD.
PC平面PCD,
PCAB. (2)在Rt△ABC中,
AC=BC=2
在Rt△PDB中

 
又∵PC⊥AC,PC⊥AB ,
∴PC⊥平面ABC
∴PC⊥CD 
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、、兩兩異面,空間與、,均相交的直線有多少條?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知M,N分別是棱長為1的正方體的棱的中點,求:
(1)MN與所成的角;
(2)MN與間的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



(1)設(shè)PB的中點為M,求證CM是否平行于平面PDA?
(2)在BC邊上是否存在點Q,使得二面角A—PD—Q為120°?若存在,確定點Q的位置;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖,右邊哪一個長方體是由左邊的平面圖形圍成的(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點,P是BC上一點,且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設(shè)這條最短路線與CC1的交點為N.求:

(1)該三棱柱的側(cè)面展開圖的對角線長;
(2)PC和NC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,E、F分別為CC1、AA1的中點,畫出平面BED1F 與平面ABCD的交線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊答案